Self-stabilizing Metric Graphs

  • Robert Gmyr
  • Jonas Lefèvre
  • Christian Scheideler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10083)

Abstract

We present a self-stabilizing algorithm for overlay networks that, for an arbitrary metric given by a distance oracle, constructs the graph representing that metric. The graph representing a metric is the unique minimal undirected graph such that for any pair of nodes the length of a shortest path between the nodes corresponds to the distance between the nodes according to the metric. The algorithm works under both an asynchronous and a synchronous dæmon. In the synchronous case, the algorithm stablizes in time O(n) and it is almost silent in that after stabilization a node sends and receives a constant number of messages per round.

Keywords

Overlay network Self-stabilizing algorithms Metric graph 

References

  1. 1.
    Aggarwal, S., Kutten, S.: Time optimal self-stabilizing spanning tree algorithms. In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 400–410. Springer, Heidelberg (1993). doi:10.1007/3-540-57529-4_72 CrossRefGoogle Scholar
  2. 2.
    Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the transitive closure framework. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 62–76. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3_7 CrossRefGoogle Scholar
  3. 3.
    Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: a self-stabilizing deterministic skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cramer, C., Fuhrmann, T., Informatik, F.F.: Self-stabilizing ring networks on connected graphs. Technical report (2005)Google Scholar
  5. 5.
    Gärtner, F.C.: A survey of self-stabilizing spanning-tree construction algorithms. Technical report (2003)Google Scholar
  6. 6.
    Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, pp. 131–140. ACM (2009)Google Scholar
  7. 7.
    Keil, J.M., Gutwin, C.A.: The Delaunay triangulation closely approximates the complete Euclidean graph. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 47–56. Springer, Heidelberg (1989). doi:10.1007/3-540-51542-9_6 CrossRefGoogle Scholar
  8. 8.
    Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete euclidean graph. Discrete Comput. Geom. 7(1), 13–28 (1992)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord overlay network. Theory Comput. Syst. 55(3), 591–612 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Onus, M., Richa, A.W., Scheideler, C.: Linearization: Locally self-stabilizing sorting in graphs. In: ALENEX (2007)Google Scholar
  11. 11.
    Richa, A., Scheideler, C., Stevens, P.: Self-stabilizing de bruijn networks. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 416–430. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3_31 CrossRefGoogle Scholar
  12. 12.
    Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology p2p systems. In: Fifth IEEE International Conference on Peer-to-Peer Computing, P2P, pp. 39–46 (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Robert Gmyr
    • 1
  • Jonas Lefèvre
    • 1
    • 2
  • Christian Scheideler
    • 1
  1. 1.Department of Computer SciencePaderborn UniversityPaderbornGermany
  2. 2.IRIF, University Paris-Diderot – Paris 7ParisFrance

Personalised recommendations