Epidemiology of Pediatric Inflammatory Bowel Disease



Inflammatory bowel diseases (IBD) are chronic relapsing gastrointestinal disorders, presenting most commonly in the adolescent to young adult age. Approximately 25% of IBD occur before age 20 years, and 4% occur in younger than 5 years of age. The underlying inflammation in IBD is thought to occur as a result of immune dysregulation in response to “normal” gut flora in a genetically susceptible host with varying levels of immunoreactivity and genetic predispositions emerging as potential critical factors in the pathogenesis of IBD and disease progression. These developments have enabled us to begin to think about individualized therapy selection, restricting aggressive and more potent therapies (e.g., biologics) for the patients who have a high risk profile and limiting the exposure of toxic medications.


Inflammatory bowel diseases Immune dysregulation Descriptive epidemiology Epigenetics 


  1. 1.
    Baldassano RN, Piccoli DA. Inflammatory bowel disease in pediatric and adolescent patients. Gastroenterol Clin N Am. 1999;28:445–58.CrossRefGoogle Scholar
  2. 2.
    Vasiliauskas EA, Kam LY, Karp LC, Gaiennie J, Yang H, Targan SR. Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut. 2000;47(4):487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mow WS, Vasiliauskas EA, Lin YC, et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology. 2004;126(2):414–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Tysk C, Lindberg E, Järnerot G, Flodérus-Myrhed B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins: a study of heritability and the influence of smoking. Gut. 1988;29(7):990–6.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Benchimol EI, Fortinsky KJ, Gozdyra P, Vanden Heuvel M, Van Limbergen J, Griffiths AM. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis. 2011;17(1):423–39.PubMedCrossRefGoogle Scholar
  6. 6.
    Loftus EV. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126:1504–17.PubMedCrossRefGoogle Scholar
  7. 7.
    Carr I, Mayberry JF. The effects of migration on ulcerative colitis: a three-year prospective study among Europeans and first- and second-generation South Asians in Leicester (1991-1994). Am J Gastroenterol. 1999;94(10):2918–22.PubMedGoogle Scholar
  8. 8.
    Kugathasan S, Judd RH, Hoffmann RG, et al. Epidemiologic and clinical characteristics of children with newly diagnosed inflammatory bowel disease in Wisconsin: a statewide population-based study. J Pediatr. 2003;143:525–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Markowitz JE, Mamula P, delRosario JF, Baldassano RN, Lewis JD, Jawad AF, Culton K, Strom BL. Patterns of complementary and alternative medicine use in a population of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2004;10:599–605.PubMedCrossRefGoogle Scholar
  10. 10.
    Barton JR, Gillon S, Ferguson A. Incidence of inflammatory bowel disease in Scottish children between 1968 and 1983; marginal fall in ulcerative colitis, three-fold rise in Crohn’s disease. Gut. 1989;30:618–22.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Armitage E, Drummond HE, Wilson DC, Ghosh S. Increasing incidence of both juvenile-onset Crohn’s disease and ulcerative colitis in Scotland. Eur J Gastroenterol Hepatol. 2001;13:1439–47.PubMedCrossRefGoogle Scholar
  12. 12.
    Askling J, Grahnquist L, Ekbom A, Finkel Y. Incidence of paediatric Crohn’s disease in Stockholm, Sweden. Lancet. 1999;354:1179. Furthermore, the incidence of pediatric IBD has almost doubled in Finland from 1987 to 2003, Turunen P, et al. Incidence of inflammatory bowel disease in Finnish children, 1987-2003. Inflamm Bowel Dis. 2006;12(8):677–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Turunen P, Kolho KL, Auvinen A, Iltanen S, Huhtala H, Ashorn M. Incidence of inflammatory bowel disease in Finnish children, 1987-2003. Inflamm Bowel Dis. 2006;12:677–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Perminow G, Brackmann S, Lyckander LG, et al. A characterization in childhood inflammatory bowel disease, a new population based inception cohort from South-Eastern Norway, 2005-07, showing increased incidence in Crohn’s disease. Scand J Gastroenterol. 2009;44:446–56.PubMedCrossRefGoogle Scholar
  15. 15.
    Pozler O, Maly J, Bonova O, et al. Incidence of Crohn disease in the Czech Republic in the years 1990 to 2001 and assessment of pediatric population with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2006;42:186–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Abramson O, Durant M, Mow W, Finley A, et al. Incidence, prevalence, and time trends of pediatric inflammatory bowel disease in Northern California, 1996 to 2006. J Pediatr. 2010;157(2):233–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Benchimo EI, Fortinsky KJ, Gozdyra P, et al. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis. 2011;17:423–39.CrossRefGoogle Scholar
  18. 18.
    Auvin S, Molinie F, Gower-Rousseau C, Brazier F, et al. Incidence, clinical presentation and location at diagnosis of pediatric inflammatory bowel disease: a prospective population-based study in northern France (1988-1999). J Pediatr Gastroenterol Nutr. 2005;41:49–55.PubMedCrossRefGoogle Scholar
  19. 19.
    Sonnenberg A, McCarty DJ, Jacobsen SJ. Geographic variation of inflammatory bowel disease within the United States. Gastroenterology. 1991;100:143–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Armitage EL, Aldhous MC, Anderson N, Drummond HE, et al. Incidence of juvenile-onset Crohn’s disease in Scotland: association with northern latitude and affluence. Gastroenterology. 2004;127:1051–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Reddy SI, Burakoff R. Inflammatory bowel disease in African Americans. Inflamm Bowel Dis. 2003;9:380–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Straus WL, Eisen GM, Sandler RS, Murray SC, Sessions JT. Crohn’s disease: does race matter? The Mid-Atlantic Crohn’s Disease Study Group. Am J Gastroenterol. 2000;95:479–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Ogunbi SO, Ransom JA, Sullivan K, Schoen BT, Gold BD. Inflammatory bowel disease in African-American children living in Georgia. J Pediatr. 1998;133:103–7.PubMedCrossRefGoogle Scholar
  24. 24.
    White JM, O’Connor S, Winter HS, et al. Inflammatory bowel disease in African American children compared with other racial/ethnic groups in a multicenter study. Clin Gastroenterol Hepatol. 2008;6:1361–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hattar LN, Abraham BP, Malaty HM, Smith EO, Ferry GD. Inflammatory bowel disease characteristics in Hispanic children in Texas. Inflamm Bowel Dis. 2012;18(3):546–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Fielding JF. The relative risk of inflammatory bowel disease among parents and siblings of Crohn’s disease patients. J Clin Gastroenterol. 1986;8:655–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen ML. Changing patterns of infectious disease. Nature. 2000;406:762–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Ouyang Q, Tandon R, Goh KL, Ooi CJ, Ogata H, Fiocchi C. The emergence of inflammatory bowel disease in the Asian Pacific region. Curr Opin Gastroenterol. 2005;21:408–13.PubMedGoogle Scholar
  29. 29.
    Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Danese S, Fiocchi C. Etiopathogenesis of inflammatory bowel diseases. World J Gastroenterol. 2006;12:4807–12.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Thomas GA, Rhodes J, Green JT. Inflammatory bowel disease and smoking – a review. Am J Gastroenterol. 1998;93:144–9.PubMedGoogle Scholar
  32. 32.
    Rubin DT, Hanauer SB. Smoking and inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2000;12:855–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Severs M, van Erp S, van der Valk ME, Mangen M, Fidder HH, et al. Smoking is associated with extra-intestinal manifestations in inflammatory bowel disease. Dutch Initiative on Crohn and Colitis. J Crohns Colitis. 2016;10(4):455–61. pii: jjv238.PubMedCrossRefGoogle Scholar
  34. 34.
    Sopori ML, Kozak W, Savage SM, Geng Y, Kluger MJ. Nicotine-induced modulation of T Cell function. Implications for inflammation and infection. Adv Exp Med Biol. 1998;437:279–89.PubMedCrossRefGoogle Scholar
  35. 35.
    Chiodini RJ, Van Kruiningen HJ, Thayer WR, Merkal RS, Coutu JA. Possible role of mycobacteria in inflammatory bowel disease. I. An unclassified Mycobacterium species isolated from patients with Crohn’s disease. Dig Dis Sci. 1984;29:1073–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Thomas GA, Swift GL, Green JT, et al. Controlled trial of antituberculous chemotherapy in Crohn’s disease: a five year follow up study. Gut. 1998;42:497–500.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ellingson JL, Anderson JL, Koziczkowski JJ, et al. Detection of viable Mycobacterium avium subsp. paratuberculosis in retail pasteurized whole milk by two culture methods and PCR. J Food Prot. 2005;68:966–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Wakefield AJ, Pittilo RM, Sim R, Cosby SL, et al. Evidence of persistent measles virus infection in Crohn’s disease. J Med Virol. 1993;39:345–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Ekbom A, Daszak P, Kraaz W, Wakefield AJ. Crohn’s disease after in-utero measles virus exposure. Lancet. 1996;348:515–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Fisher NC, Yee L, Nightingale P, McEwan R, Gibson JA. Measles virus serology in Crohn’s disease. Gut. 1997;41:66–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ghosh S, Armitage E, Wilson D, Minor PD, Afzal MA. Detection of persistent measles virus infection in Crohn’s disease: current status of experimental work. Gut. 2001;48:748–52.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Pineton de Chambrun G, Dauchet L, Gower-Rousseau C, Cortot A, Colombel JF, Peyrin-Biroulet L. Vaccination and risk for developing inflammatory bowel disease: a meta-analysis of case-control and cohort studies. Clin Gastroenterol Hepatol. 2015;13(8):1405–15.PubMedCrossRefGoogle Scholar
  43. 43.
    Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361:512–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Katz JA. Prevention is the best defense: probiotic prophylaxis of pouchitis. Gastroenterology. 2003;124:1535–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Swidsinski A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122:44–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Duchmann R, Kaiser I, Hermann E, Mayet W, et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol. 1995;102:448–55.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Daniel NF, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci. 2007;104:13780–5.CrossRefGoogle Scholar
  49. 49.
    Kolho KL, Korpela K, Jaakkola T, Pichai MV, Zoetendal EG, Salonen A, de Vos WM. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am J Gastroenterol. 2015;110(6):921–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Haberman Y, Tickle TL, Dexheimer PJ, Kim MO, Tang D, Karns R, et al. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest. 2014;124(8):3617–33. doi: 10.1172/JCI75436. Epub 2014 Jul 8. Erratum in: J Clin Invest. 2015;125(3):1363.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Girardin SE, Hugot JP, Sansonetti PJ. Lessons from Nod2 studies: towards a link between Crohn’s disease and bacterial sensing. Trends Immunol. 2003;24:652–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Sewell GW, Marks DJ, Segal AW. The immunopathogenesis of Crohn’s disease: a three-stage model. Curr Opin Immunol. 2009;21:506–13.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Koutroubakis IE, Vlachonikolis IG, Kouroumalis EA. Role of appendicitis and appendectomy in the pathogenesis of ulcerative colitis: a critical review. Inflamm Bowel Dis. 2002;8:277–86.PubMedCrossRefGoogle Scholar
  55. 55.
    Koutroubakis IE, Vlachonikolis IG. Appendectomy and the development of ulcerative colitis: results of a metaanalysis of published case-control studies. Am J Gastroenterol. 2000;95:171–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Duggan AE, Usmani I, Neal KR, Logan RF. Appendicectomy, childhood hygiene, Helicobacter pylori status, and risk of inflammatory bowel disease: a case control study. Gut. 1998;43:494–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Andersson RE, Olaison G, Tysk C, Ekbom A. Appendectomy is followed by increased risk of Crohn’s disease. Gastroenterology. 2003;124:40–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Schack-Nielsen L, Michaelsen KF. Breast feeding and future health. Curr Opin Clin Nutr Metab Care. 2006;9:289–96.PubMedCrossRefGoogle Scholar
  59. 59.
    Klement E, Cohen RV, Boxman J, Joseph A, Reif S. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am J Clin Nutr. 2004;80:1342–52.PubMedGoogle Scholar
  60. 60.
    Baron S, Turck D, Leplat C, Merle V, et al. Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut. 2005;54:357–63.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bernstein CN, Rawsthorne P, Cheang M, Blanchard JF. A population-based case control study of potential risk factors for IBD. Am J Gastroenterol. 2006;101:993–1002.PubMedCrossRefGoogle Scholar
  62. 62.
    Martini GA, Brandes JW. Increased consumption of refined carbohydrates in patients with Crohn’s disease. Klin Wochenschr. 1976;54:367–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Gilat T, Hacohen D, Lilos P, Langman MJ. Childhood factors in ulcerative colitis and Crohn’s disease. An international cooperative study. Scand J Gastroenterol. 1987;22:1009–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Griffiths AM. Enteral nutrition in the management of Crohn’s disease. JPEN J Parenter Enteral Nutr. 2005;29:S108–12; discussion S112–7, S184–8.Google Scholar
  65. 65.
    Godet PG, May GR, Sutherland LR. Meta-analysis of the role of oral contraceptive agents in inflammatory bowel disease. Gut. 1995;37:668–73.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Berg DJ, Zhang J, Weinstock JV, Ismail HF, et al. Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology. 2002;123:1527–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Ungaro R, Bernstein CN, Gearry R, Hviid A, Kolho KL, Kronman MP, Shaw S, Van Kruiningen H, Colombel JF, Atreja A. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol. 2014;109(11):1728–38.PubMedCrossRefGoogle Scholar
  68. 68.
    ShawS Y, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 2010;105(12):2687–92.CrossRefGoogle Scholar
  69. 69.
    Brodin MB. Inflammatory bowel disease and isotretinoin. J Am Acad Dermatol. 1986;14:843.PubMedCrossRefGoogle Scholar
  70. 70.
    Reniers DE, Howard JM. Isotretinoin-induced inflammatory bowel disease in an adolescent. Ann Pharmacother. 2001;35:1214–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Reddy D, Siegel CA, Sands BE, et al. Possible association between isotretinoin and inflammatory bowel disease. Am J Gastroenterol. 2006;101:1569–73.PubMedCrossRefGoogle Scholar
  72. 72.
    Bernstein CN, Nugent Z, Longobardi T, Blanchard JF. Isotretinoin is not associated with inflammatory bowel disease: a population-based case-control study. Am J Gastroenterol. 2009;104:2774–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Crockett SD, Gulati A, Sandler RS, MD K. A causal association between Accutane and IBD has yet to be established. Am J Gastroenterol. 2009;104(10):2387–93.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lee SY, Jamal MM, Nguyen ET, Bechtold ML, Nguyen DL. Does exposure to isotretinoin increase the risk for the development of inflammatory bowel disease? A meta-analysis. Eur J Gastroenterol Hepatol. 2016;28(2):210–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Schaeffer ME, Machan JT, Kawatu D, Langton CR, et al. Factors that determine risk for surgery in pediatric patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2010;8:789–94.CrossRefGoogle Scholar
  76. 76.
    Griffiths AM, Nguyen P, Smith C, MacMillan JH, Sherman PM. Growth and clinical course of children with Crohn’s disease. Gut. 1993;34:939–43.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gupta N, Cohen SA, Bostrom AG, Kirschner BS, Baldassano RN, et al. Risk factors for initial surgery in pediatric patients with Crohn’s disease. Gastroenterology. 2006;130:1069–77.PubMedCrossRefGoogle Scholar
  78. 78.
    Gasche C, Scholmerich J, Brynskov J, et al. A simple classification of Crohn’s disease: report of the working party of the world congresses of gastroenterology, Vienna 1998. Inflamm Bowel Dis. 2000;6:8–15.PubMedCrossRefGoogle Scholar
  79. 79.
    Vernier-Massouille G, Balde M, Salleron J, et al. Natural history of pediatric Crohn’s disease: a population-based cohort study. Gastroenterology. 2008;135(4):1106–13.PubMedCrossRefGoogle Scholar
  80. 80.
    Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the montreal classification of inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis. 2011;17:1314–21.PubMedCrossRefGoogle Scholar
  81. 81.
    Hoffenberg EJ, Fidanza S, Sauaia A. Serologic testing for inflammatory bowel disease. J Pediatr. 1999;134:447–52.PubMedCrossRefGoogle Scholar
  82. 82.
    Khan K, Schwarzenberg SJ, Sharp H, Greenwood D, Weisdorf-Schindele S. Role of serology and routine laboratory tests in childhood inflammatory bowel disease. Inflamm Bowel Dis. 2002;8:325–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Zholudev A, Zurakowski D, Young W, Leichtner A, Bousvaros A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn’s disease and ulcerative colitis: diagnostic value and correlation with disease phenotype. Am J Gastroenterol. 2004;99:2235–41.PubMedCrossRefGoogle Scholar
  84. 84.
    Klebl FH, Bataille F, Bertea CR, et al. Association of perinuclear anti-neutrophil cytoplasmic antibodies and anti-Saccharomyces cerevisiae antibodies with Vienna classification subtypes of Crohn’s disease. Inflamm Bowel Dis. 2003;9(5):302–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Forcione DG, Rosen MJ, Kisiel JB, Sands BE. Anti-Saccharomyces cerevisiae antibody (ASCA) positivity is associated with increased risk for early surgery in Crohn’s disease. Gut. 2004;53(8):1117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fleshner P, Ippoliti A, Dubinsky M, et al. Both preoperative perinuclear antineutrophil cytoplasmic antibody and anti-CBir1 expression in ulcerative colitis patients influence pouchitis development after ileal pouch-anal anastomosis. Clin Gastroenterol Hepatol. 2008;6(5):561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Muratori P, Muratori L, Guidi M, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) and autoimmune liver diseases. Clin Exp Immunol. 2003;132(3):473–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Riente L, Chimenti D, Pratesi F, et al. Antibodies to tissue transglutaminase and Saccharomyces cerevisiae in ankylosing spondylitis and psoriatic arthritis. J Rheumatol. 2004;31(5):920–4.PubMedGoogle Scholar
  89. 89.
    Sakly W, Mankai A, Sakly N, et al. Anti-Saccharomyces cerevisiae antibodies are frequent in type 1 diabetes. Endocr Pathol. 2010;21(2):108–14.PubMedCrossRefGoogle Scholar
  90. 90.
    Condino AA, Hoffenberg EJ, Accurso F, et al. Frequency of ASCA seropositivity in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2005;41(1):23–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Makharia GK, Sachdev V, Gupta R, Lal S, Pandey RM. Anti-Saccharomyces cerevisiae antibody does not differentiate between Crohn’s disease and intestinal tuberculosis. Dig Dis Sci. 2007;52(1):33–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Dubinsky MC, Lin YC, Dutridge D, et al. Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101(2):360–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dubinsky MC, Kugathasan S, Mei L, et al. Increased immune reactivity predicts aggressive complicating Crohn’s disease in children. Clin Gastroenterol Hepatol. 2008;6(10):1105–11.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Abreu MT, Taylor KD, Lin YC, et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology. 2002;123(3):679–88.PubMedCrossRefGoogle Scholar
  95. 95.
    Brant SR, Picco MF, Achkar JP, et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn’s disease phenotypes. Inflamm Bowel Dis. 2003;9(5):281–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Kugathasan S, Collins N, Maresso K, et al. Card15 gene mutations and risk for early surgery in pediatric onset Crohn’s disease. Clin Gastroenterol Heaptol. 2004;2(11):1003–9.CrossRefGoogle Scholar
  97. 97.
    Russell RK, Drummond HE, Nimmo EE, et al. Genotype-phenotype analysis in childhood-onset Crohn’s disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis. 2005;11(11):955–64.PubMedCrossRefGoogle Scholar
  98. 98.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Weersma RK, Stokkers PC, van Bodegraven AA, et al. Molecular prediction of disease risk and severity in a large Dutch Crohn’s disease cohort. Gut. 2009;58(3):388–95.PubMedCrossRefGoogle Scholar
  100. 100.
    Ippoliti AF, Devlin S, Yang H, et al. The relationship between abnormal innate and adaptive immune function and fibrostenosis in Crohn’s disease patients [abstract 127]. Gastroenterology. 2006;130:A24–5.Google Scholar
  101. 101.
    Devlin SM, Yang H, Ippoliti A, et al. NOD2 variants and antibody response to microbial antigens in Crohn’s disease patients and their unaffected relatives. Gastroenterology. 2007;132(2):576–86.PubMedCrossRefGoogle Scholar
  102. 102.
    Ippoliti A, Devlin S, Mei L, et al. Combination of innate and adaptive immune alterations increased the likelihood of fibrostenosis in Crohn’s disease. Inflamm Bowel Dis. 2010;16(8):1279–85.PubMedCrossRefGoogle Scholar
  103. 103.
    Lichtenstein GR, Barken DM, Eggleston L, et al. A novel algorithm-based approach using clinical parameters, genetic and serological markers to effectively predict aggressive disease behavior in patients with Crohn’s disease [abstract 207]. Presented at Digestive Disease Week, New Orleans, 1–6 May 2010.Google Scholar
  104. 104.
    Esters N, Vermeire S, Joossens S, et al. Serological markers for prediction of response to anti-tumor necrosis factor treatment in Crohn’s disease. Am J Gastroenterol. 2002;97(6):1458–62.PubMedCrossRefGoogle Scholar
  105. 105.
    Ferrante M, Vermeire S, Katsanos KH, et al. Predictors of early response to infliximab in patients with ulcerative colitis. Inflamm Bowel Dis. 2007;13(2):123–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Hlavaty T, Ferrante M, Henckaerts L, Pierik M, et al. Predictive model for the outcome of infliximab therapy in Crohn’s disease based on apoptotic pharmacogenetic index and clinical predictors. Inflamm Bowel Dis. 2007;13(4):372–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Dubinsky MC, Mei L, Friedman M, et al. Genome wide association (GWA) predictors of anti-TNF alpha therapeutic responsiveness in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2009;16(8):1357–66.CrossRefGoogle Scholar
  108. 108.
    Kugathasan S, Amre D. Inflammatory bowel disease – environmental modification and genetic determinants. Pediatr Clin N Am. 2006;53:727–49.CrossRefGoogle Scholar
  109. 109.
    Kugathasan S, Baldassano RN, Bradfield JP, et al. Loci on 20q13 and 21q22 are associated with pediatric onset inflammatory bowel disease. Nat Genet. 2008;40(10):1211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Imielinski M, Baldassano RN, Griffiths A, et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009;41:1335–40.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Glocker EO, Kotlarz D, Boztug K, Gertz EM, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Shouval DS, Ebens CL, Murchie R, McCann K, Rabah R, Klein C, Muise A, Snapper SB. Large B-cell lymphoma in an adolescent patient with IL-10 receptor deficiency and history of infantile inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2016;63(1):e15–7.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hayes P, Dhillon P, O’Neill K, Thoeni C et al. Defetcs in NADPH oxidase genes NOX1 and DUOX2 in very early onset inflmmatory bowel disease. Cell Mole Gastroenterol Hepatol 2015;1:489–502.Google Scholar
  114. 114.
    Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut 2013;62:1795–805.Google Scholar
  115. 115.
    Mature JD, Arias AA, Wright NA, Wroble I et al. A new genetic subgroup of chronic granulamtous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood 2009;114:3309–15.Google Scholar
  116. 116.
    Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, Serpe JM, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13(3):255–62.PubMedCrossRefGoogle Scholar
  117. 117.
    Okou DT, Mondal K, Faubion WA, Kobrynski LJ, Denson LA, Mulle JG, et al. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2014;58(5):561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Moran CJ, Walters TD, Guo CH, Kugathasan S, Klein C, Turner D, Wolters VM, et al. IL-10R polymorphisms are associated with very-early-onset ulcerative colitis. Inflamm Bowel Dis. 2013;19(1):115–23.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Loddo I, Romano C. Inflammatory bowel disease: genetics, epigenetics and pathogenesis. Front Immunol. 2015;6:551.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68.PubMedCrossRefGoogle Scholar
  121. 121.
    Wang Z, Zang C, Rosenfeld JA, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40:897–903.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  123. 123.
    Karatzas PS, Gazouli M, Safioleas M, Mantzaris GJ. DNA methylation changes in inflammatory bowel disease. Ann Gastroenterol. 2014;27:125–32. 58.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Hasler R, Feng Z, Backdahl L, et al. A functional methylome map of ulcerative colitis. Genome Res. 2012;22:2130–7.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Cooke J, Zhang H, Greger L, et al. Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:2128–37.PubMedCrossRefGoogle Scholar
  126. 126.
    Karatzas PS, Mantzaris GJ, Safioleas M, Gazouli M. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine. 2014;93:e309.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ventham NT, Kennedy NA, Nimmo ER, Satsangi J. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology. 2013;145:293–308.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387(10014):156–67. pii: S0140-6736(15)00465-1.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wu F, Zhang S, Dassopoulos T, et al. Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm Bowel Dis. 2010;16:1729–38.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Castro M, Papadatou B, Baldassare M, et al. Inflammatory bowel disease in children and adolescents in Italy: data from the pediatric national IBD register (1996-2003). Inflamm Bowel Dis. 2008;14(9):1246–52.PubMedCrossRefGoogle Scholar
  131. 131.
    Tiemi J, Komati S, Sdepanian VL. Effectiveness of infliximab in Brazilian children and adolescents with Crohn disease and ulcerative colitis according to clinical manifestations, activity indices of inflammatory bowel disease, and corticosteroid use. J Pediatr Gastroenterol Nutr. 2010;50(6):628–33.PubMedCrossRefGoogle Scholar
  132. 132.
    AL-Qabandi WA, Buhamrah EK, Hamdi KA, A-Osaimi SA, Al-Ruwayeh AA, Madda J. Inflammatory bowel disease in children, an evolving problem in Kuwait. Saudi J Gastroenetrol. 2011;17(5):323–7.CrossRefGoogle Scholar
  133. 133.
    Kim BJ, Song SM, Kim KM, Lee YJ, Rhee KW, Jang JY, et al. Characteristics and trends in the incidence of inflammatory bowel disease in Korean children: a single-center experience. Dig Dis Sci. 2010;55(7):1989–95. Epub 2009 Sep 10.PubMedCrossRefGoogle Scholar
  134. 134.
    Orel R, Kamhi T, Vidmar G, Mamula P. Epidemiology of pediatric chronic inflammatory bowel disease in central and western Slovenia, 1994-2005. J Pediatr Gastroenterol Nutr. 2009;48(5):579–86.PubMedCrossRefGoogle Scholar
  135. 135.
    Fallahi GH, Moazzami K, Tabatabaeiyan M, Zamani MM, Asgar-Shirazi M, et al. Clinical characteristics of Iranian pediatric patients with inflammatory bowel disease. Acta Gastroenterol Belg. 2009;72(2):230–4.PubMedGoogle Scholar
  136. 136.
    Van Kruiningen HJ, Freda BJ. A clustering of Crohn’s disease in Mankato, Minnesota. Inflamm Bowel Dis. 2001;7:27–33.PubMedCrossRefGoogle Scholar
  137. 137.
    Rushton G. Public health, GIS, and spatial analytic tools. Annu Rev Public Health. 2003;24:43–56.PubMedCrossRefGoogle Scholar
  138. 138.
    Green C, Elliott L, Beaudoin C, Bernstein CN. A population-based ecologic study of inflammatory bowel disease: searching for etiologic clues. Am J Epidemiol. 2006;164:615–23; discussion 624–8.Google Scholar
  139. 139.
    Cosgrove M, Al-Atia RF, Jenkins HR. The epidemiology of paediatric inflammatory bowel disease. Arch Dis Child. 1996;74:460–1.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Bjornsson S, Johannsson JH. Inflammatory bowel disease in Iceland, 1990-1994: a prospective, nationwide, epidemiological study. Eur J Gastroenterol Hepatol. 2000;12:31–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Gottrand F, Colombel JF, Moreno L, Salomez JL, Farriaux JP, Cortot A. Incidence of inflammatory bowel diseases in children in the Nord-Pas-de-Calais region. Arch Fr Pediatr. 1991;48:25–8.PubMedGoogle Scholar
  142. 142.
    Stordal K, Jahnsen J, Bentsen BS, Moum B. Pediatric inflammatory bowel disease in southeastern Norway: a five-year follow-up study. Digestion. 2004;70:226–30.PubMedCrossRefGoogle Scholar
  143. 143.
    Olafsdottir EJ, Fluge G, Haug K. Chronic inflammatory bowel disease in children in western Norway. J Pediatr Gastroenterol Nutr. 1989;8:454–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Lindberg E, Lindquist B, Holmquist L, Hildebrand H. Inflammatory bowel disease in chilren and adolescents in Sweden, 1984-1995. J Pediatr Gastroenterol Nutr. 2000;30:259–64.PubMedCrossRefGoogle Scholar
  145. 145.
    Hildebrand H, Finkel Y, Grahnquist L, Lindholm J, Ekbom A, Askling J. Changing pattern of paediatric inflammatory bowel disease in northern Stockholm 1990-2001. Gut. 2003;52:1432–4.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Hassan K, Cowan FJ, Jenkins HR. The incidence of childhood inflammatory bowel disease in Wales. Eur J Pediatr. 2000;159:261–3.PubMedCrossRefGoogle Scholar
  147. 147.
    Sood A, Midha V, Sood N, Bhatia AS, Avasthi G. Incidence and prevalence of ulcerative colitis in Punjab, North India. Gut. 2003;52:1587–90.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Phavichitr N, Cameron DJ, Catto-Smith AG. Increasing incidence of Crohn’s disease in Vicorian children. J Gastroenterol Hepatol. 2003;18:329–32.PubMedCrossRefGoogle Scholar
  149. 149.
    Malaty HM, Fan X, Opekun AR, et al. Rising incidence of inflammatory bowel disease among children: a 12 year study. J Pediatr Gastroenterol Nutr. 2010;50:27–31.PubMedCrossRefGoogle Scholar
  150. 150.
    Ahmed M, Davies IH, Hood K, et al. Incidence of paediatric inflammatory bowel disease in South Wales. Arch Dis Child. 2006;91:344–5.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Sawczenko A, Sandhu BK, Logan RF, et al. Prospective survey of childhood inflammatory bowel disease in the British Isles. Lancet. 2001;357:1093–4.PubMedCrossRefGoogle Scholar
  152. 152.
    Jakobsen C, Weaver V, Urne F, et al. Incidence of ulcerative colitis and Crohn’s disease in Danish children: still rising or leveling out? J Crohn's Colitis. 2008;2:152–7.CrossRefGoogle Scholar
  153. 153.
    Kolek A, Janout V, Tichy M, et al. The incidence of inflammatory bowel disease is increasing among children 15 years old and younger in the Czech Republic. J Pediatr Gastroenterol Nutr. 2004;38:362–3.PubMedCrossRefGoogle Scholar
  154. 154.
    Ott C, Obermeier F, Thieler S, et al. The incidence of inflammatory bowel disease in a rural region of Southern Germany: a prospective population-based study. Eur J Gastroenetrol Hepatol. 2008;20:917–23.CrossRefGoogle Scholar
  155. 155.
    Orel R, Kamhi T, Vidmar G, et al. Epidemiology of pediatric chronic inflammatory bowel disease in central and western Slovenia, 1994-2005. J Pediatr Gastroenterol Nutr. 2009;48:579–86.PubMedCrossRefGoogle Scholar
  156. 156.
    Arin Letmendia A, Borda Celaya F, Burusco Paternain MJ, et al. High incidence rates of inflammatory bowel disease in Navarra (Spain). Results of a prospective, population-based study. Gastroenterol Hepatol. 2008;31:111–6.CrossRefGoogle Scholar
  157. 157.
    Yap J, Wesley A, Mouat S, et al. Paediatric inflammatory bowel disease in New Zealand. N Z Med J. 2008;121:19–34.PubMedGoogle Scholar
  158. 158.
    Benchimol EI, Guttmann A, Griffiths AM, et al. Increasing incidence of paediatric inflammatory bowekl disease in Ontario, Canada: evidence from health administrative data. Gut. 2009;58:1490–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Gastroenterology, Hepatology and NutritionCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Department of PediatricsEmory University School of Medicine and Children’s Healthcare of AtlantaAtlantaUSA
  3. 3.Emory University School of MedicineDivision of Pediatric Gastroenterology, Emory Children’s CenterAtlantaUSA

Personalised recommendations