Immune Dysregulation Associated with Very Early-Onset Inflammatory Bowel Disease

  • Judith KelsenEmail author
  • Kathleen Sullivan


Inflammatory bowel disease (IBD) is a multifactorial disease caused by dysregulated immune responses to commensal or pathogenic microbes in the intestine, resulting in chronic intestinal inflammation. An emerging population of patients with IBD occurring before the age of 5 represent a unique form of disease, termed very early-onset (VEO)-IBD, which is phenotypically and genetically distinct from older-onset IBD. VEO-IBD is associated with increased disease severity, aggressive progression, and poor responsiveness to most conventional therapies. Here we discuss the phenotypic nature of VEO-IBD, the recent identification of novel gene variants associated with disease, and the functional immunologic studies interrogating the contribution of specific genetic variants to the development of chronic intestinal inflammation.


VEO-IBD Whole exome sequencing Immunodeficiency 


  1. 1.
    Goyette P, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47(2):172–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Stokkers PC, et al. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut. 1999;45(3):395–401.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sattler S, et al. IL-10-producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. J Autoimmun. 2014;50:107–22.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Saxon A, et al. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol. 1990;86(2):202–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 2011;140(6):1704–12.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jostins L, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Jacobs J, Braun J. Host genes and their effect on the intestinal microbiome garden. Genome Med. 2014;6(12):119.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    D’Inca R, et al. Increased intestinal permeability and NOD2 variants in familial and sporadic Crohn’s disease. Aliment Pharmacol Ther. 2006;23(10):1455–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Buhner S, et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006;55(3):342–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):298–306.PubMedCrossRefGoogle Scholar
  12. 12.
    Maynard CL, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lodes MJ, et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest. 2004;113(9):1296–306.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Baumgart M, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1(5):403–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Darfeuille-Michaud A, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127(2):412–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Dalwadi H, et al. The Crohn’s disease-associated bacterial protein I2 is a novel enteric t cell superantigen. Immunity. 2001;15(1):149–58.PubMedCrossRefGoogle Scholar
  21. 21.
    Walker AW, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Willing B, et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15(5):653–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Willing BP, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139(6):1844–1854 e1.PubMedCrossRefGoogle Scholar
  24. 24.
    Martin HM, et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology. 2004;127(1):80–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Benchimol EI, et al. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut. 2009;58(11):1490–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut. 2013;62(12):1795–805.PubMedCrossRefGoogle Scholar
  27. 27.
    Glocker E, Grimbacher B. Inflammatory bowel disease: is it a primary immunodeficiency? Cell Mol Life Sci. 2012;69(1):41–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Ruemmele FM, et al. Characteristics of inflammatory bowel disease with onset during the first year of life. J Pediatr Gastroenterol Nutr. 2006;43(5):603–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Cannioto Z, et al. IBD and IBD mimicking enterocolitis in children younger than 2 years of age. Eur J Pediatr. 2009;168(2):149–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Glocker EO, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    de Ridder L, et al. Genetic susceptibility has a more important role in pediatric-onset Crohn’s disease than in adult-onset Crohn’s disease. Inflamm Bowel Dis. 2007;13(9):1083–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Biank V, Broeckel U, Kugathasan S. Pediatric inflammatory bowel disease: clinical and molecular genetics. Inflamm Bowel Dis. 2007;13(11):1430–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Glocker EO, et al. Infant colitis – It’s in the genes. Lancet. 2010;376(9748):1272.PubMedCrossRefGoogle Scholar
  34. 34.
    Worthey EA, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13(3):255–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Agarwal S, Mayer L. Diagnosis and treatment of gastrointestinal disorders in patients with primary immunodeficiency. Clin Gastroenterol Hepatol. 2013;11(9):1050–63.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mao H, et al. Exome sequencing identifies novel compound heterozygous mutations of IL-10 receptor 1 in neonatal-onset Crohn’s disease. Genes Immun. 2012;13(5):437–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Avitzur Y, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology. 2014;146(4):1028–39.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kammermeier J, et al. Targeted gene panel sequencing in children with very early onset inflammatory bowel disease-evaluation and prospective analysis. J Med Genet. 2014;51(11):748–55.PubMedCrossRefGoogle Scholar
  39. 39.
    Durandy A, Kracker S, Fischer A. Primary antibody deficiencies. Nat Rev Immunol. 2013;13(7):519–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Muise AM, Snapper SB, Kugathasan S. The age of gene discovery in very early onset inflammatory bowel disease. Gastroenterology. 2012;143(2):285–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Uhlig HH, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147(5):990–1007 e3.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Heyman MB, et al. Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry. J Pediatr. 2005;146(1):35–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Mamula P, et al. Inflammatory bowel disease in children 5 years of age and younger. Am J Gastroenterol. 2002;97(8):2005–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Benchimol EI, et al. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterol. 2014;147(4):803–13 e7; quiz e14–5.Google Scholar
  45. 45.
    Aloi M, et al. Phenotype and disease course of early-onset pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(4):597–605.PubMedCrossRefGoogle Scholar
  46. 46.
    Kelsen JR, et al. Maintaining intestinal health: the genetics and immunology of very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol. 2015;1(5):462–76.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chalaris A, et al. ADAM17-mediated shedding of the IL6R induces cleavage of the membrane stub by gamma-secretase. Biochim Biophys Acta. 2010;1803(2):234–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Blaydon DC, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med. 2011;365(16):1502–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Karamchandani-Patel G, et al. Congenital alterations of NEMO glutamic acid 223 result in hypohidrotic ectodermal dysplasia and immunodeficiency with normal serum IgG levels. Ann Allergy Asthma Immunol. 2011;107(1):50–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zimmer KP, et al. Esophageal stenosis in childhood: dystrophic epidermolysis bullosa without skin blistering due to collagen VII mutations. Gastroenterology. 2002;122(1):220–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Sadler E, et al. Novel KIND1 gene mutation in Kindler syndrome with severe gastrointestinal tract involvement. Arch Dermatol. 2006;142(12):1619–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Ussar S, et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 2008;4(12):e1000289.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kern JS, et al. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms. J Pathol. 2007;213(4):462–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Fiskerstrand T, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med. 2012;366(17):1586–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Chalaris A, et al. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J Exp Med. 2010;207(8):1617–24.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Nenci A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446(7135):557–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Zaph C, et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature. 2007;446(7135):552–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549.PubMedCrossRefGoogle Scholar
  59. 59.
    Hand TW, et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science. 2012;337(6101):1553–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cong Y, et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A. 2009;106(46):19256–61.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Cheng LE, et al. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol. 2009;132(1):124–31.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Luetteke NC, et al. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell. 1993;73(2):263–78.PubMedCrossRefGoogle Scholar
  63. 63.
    Mann GB, et al. Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell. 1993;73(2):249–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Kang EM, et al. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2011;127(6):1319–26; quiz 1327–8.Google Scholar
  65. 65.
    Abo A, et al. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991;353(6345):668–70.PubMedCrossRefGoogle Scholar
  66. 66.
    Matute JD, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009;114(15):3309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Marks DJ, et al. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol. 2009;104(1):117–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Jones LB, et al. Special article: chronic granulomatous disease in the United Kingdom and Ireland: a comprehensive national patient-based registry. Clin Exp Immunol. 2008;152(2):211–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rosenzweig SD. Inflammatory manifestations in chronic granulomatous disease (CGD). J Clin Immunol. 2008;28(Suppl 1):S67–72.PubMedCrossRefGoogle Scholar
  70. 70.
    Foster CB, et al. Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. J Clin Invest. 1998;102(12):2146–55.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Muise AM, et al. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut. 2012;61(7):1028–35.PubMedCrossRefGoogle Scholar
  72. 72.
    Dhillon SS, et al. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology. 2014;147(3):680–689 e2.PubMedCrossRefGoogle Scholar
  73. 73.
    Roos D, Law SK. Hematologically important mutations: leukocyte adhesion deficiency. Blood Cells Mol Dis. 2001;27(6):1000–4.PubMedCrossRefGoogle Scholar
  74. 74.
    van de Vijver E, et al. Hematologically important mutations: leukocyte adhesion deficiency (first update). Blood Cells Mol Dis. 2012;48(1):53–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Schmidt S, Moser M, Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol. 2013;55(1):49–58.PubMedCrossRefGoogle Scholar
  76. 76.
    Davis MK, et al. Adalimumab for the treatment of Crohn-like colitis and enteritis in glycogen storage disease type Ib. J Inherit Metab Dis. 2008;31 Suppl 3:505–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Uzel G, et al. Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis. 2010;51(12):1429–34.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kato K, et al. Successful allogeneic hematopoietic stem cell transplantation for chronic granulomatous disease with inflammatory complications and severe infection. Int J Hematol. 2011;94(5):479–82.PubMedCrossRefGoogle Scholar
  79. 79.
    de Luca A, et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A. 2014;111(9):3526–31.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mombaerts P, et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869–77.PubMedCrossRefGoogle Scholar
  81. 81.
    Shinkai Y, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68(5):855–67.PubMedCrossRefGoogle Scholar
  82. 82.
    Peschon JJ, et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994;180(5):1955–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131(4):959–71.PubMedCrossRefGoogle Scholar
  84. 84.
    Vetrie D, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226–33.PubMedCrossRefGoogle Scholar
  85. 85.
    Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93(3):190–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Alangari A, et al. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol. 2012;130(2):481–8 e2.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Pai SY, Cowan MJ. Stem cell transplantation for primary immunodeficiency diseases: the North American experience. Curr Opin Allergy Clin Immunol. 2014;14(6):521–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Shearer WT, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133(4):1092–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Puel A, et al. Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20(4):394–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Dadi HK, Simon AJ, Roifman CM. Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Engl J Med. 2003;349(19):1821–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Nielsen C, et al. Immunodeficiency Associated with a Nonsense Mutation of IKBKB. J Clin Immunol. 2014;34(8):916–21.PubMedCrossRefGoogle Scholar
  92. 92.
    Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;79(5):following 922.PubMedGoogle Scholar
  93. 93.
    Watanabe Y, et al. T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation. J Allergy Clin Immunol. 2013;132(3):648–655 e1.PubMedCrossRefGoogle Scholar
  94. 94.
    Shimizu M, et al. Aberrant glycosylation of IgA in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. J Allergy Clin Immunol. 2013;131(2):587–90 e1–3.Google Scholar
  95. 95.
    Westerberg LS, et al. Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B-cell development and function. Blood. 2012;119(17):3966–74.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Becker-Herman S, et al. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J Exp Med. 2011;208(10):2033–42.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lanzi G, et al. A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J Exp Med. 2012;209(1):29–34.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Nguyen DD, et al. Lymphocyte-dependent and Th2 cytokine-associated colitis in mice deficient in Wiskott-Aldrich syndrome protein. Gastroenterology. 2007;133(4):1188–97.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Maillard MH, et al. The Wiskott-Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells. J Exp Med. 2007;204(2):381–91.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nguyen DD, et al. Wiskott-Aldrich syndrome protein deficiency in innate immune cells leads to mucosal immune dysregulation and colitis in mice. Gastroenterol. 2012;143(3):719–29 e1–2.Google Scholar
  101. 101.
    Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2012. J Allergy Clin Immunol. 2013;131(3):675–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.PubMedCrossRefGoogle Scholar
  104. 104.
    van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clin Dev Immunol. 2007;2007:89017.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Zeissig S, et al. Early-onset Crohn’s disease and autoimmunity associated with a variant in CTLA-4. Gut. 2015;64(12):1889–97.PubMedCrossRefGoogle Scholar
  106. 106.
    Cebula A, et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature. 2013;497(7448):258–62.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lathrop SK, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250–4.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chinen T, et al. A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota. J Exp Med. 2010;207(11):2323–30.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Schultz M, et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Phys. 1999;276(6 Pt 1):G1461–72.Google Scholar
  110. 110.
    Schiering C, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564–8.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Shim JO, et al. Interleukin-10 receptor mutations in children with neonatal-onset Crohn’s disease and intractable ulcerating enterocolitis. Eur J Gastroenterol Hepatol. 2013;25(10):1235–40.PubMedGoogle Scholar
  112. 112.
    Moore KW, et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.PubMedCrossRefGoogle Scholar
  113. 113.
    Hutchins AP, Diez D, Miranda-Saavedra D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief Funct Genomics. 2013;12(6):489–98.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Engelhardt KR, Grimbacher B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr Top Microbiol Immunol. 2014;380:1–18.PubMedGoogle Scholar
  115. 115.
    Murray PJ. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci U S A. 2005;102(24):8686–91.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Neven B, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood. 2013;122(23):3713–22.PubMedCrossRefGoogle Scholar
  117. 117.
    Engelhardt KR, et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131(3):825–30.PubMedCrossRefGoogle Scholar
  118. 118.
    Murugan D, et al. Very early onset inflammatory bowel disease associated with aberrant trafficking of IL-10R1 and cure by T cell replete haploidentical bone marrow transplantation. J Clin Immunol. 2014;34(3):331–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Kuhn R, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.PubMedCrossRefGoogle Scholar
  120. 120.
    Sellon RK, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66(11):5224–31.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Rubtsov YP, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–58.PubMedCrossRefGoogle Scholar
  122. 122.
    Roers A, et al. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J Exp Med. 2004;200(10):1289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Shouval DS, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity. 2014;40(5):706–19.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zigmond E, et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity. 2014;40(5):720–33.PubMedCrossRefGoogle Scholar
  125. 125.
    Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12(5):383–90.PubMedCrossRefGoogle Scholar
  126. 126.
    Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity. 2012;37(4):601–10.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Spits H, et al. Innate lymphoid cells – A proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Sonnenberg GF, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321–5.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hepworth MR, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113–7.Google Scholar
  130. 130.
    Bernink JH, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14(3):221–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Geremia A, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208(6):1127–33.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Takayama T, et al. Imbalance of NKp44(+)NKp46(−) and NKp44(−)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterol. 2010;139(3):882–92, 892 e1–3.Google Scholar
  133. 133.
    Ciccia F, et al. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 2012;64(6):1869–78.PubMedCrossRefGoogle Scholar
  134. 134.
    Fuchs A, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity. 2013;38(4):769–81.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hepworth MR, et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science. 2015;348(6238):1031–5.Google Scholar
  136. 136.
    Okada Y, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81.PubMedCrossRefGoogle Scholar
  137. 137.
    Ludvigsson JF, Neovius M, Hammarstrom L. Association between IgA deficiency & other autoimmune conditions: a population-based matched cohort study. J Clin Immunol. 2014;34(4):444–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Palm NW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–10.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bianco AM, et al. Mevalonate kinase deficiency and IBD: shared genetic background. Gut. 2014;63(8):1367–8.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Kuloglu Z, et al. An infant with severe refractory Crohn’s disease and homozygous MEFV mutation who dramatically responded to colchicine. Rheumatol Int. 2012;32(3):783–5.PubMedCrossRefGoogle Scholar
  141. 141.
    Beser OF, et al. Association of inflammatory bowel disease with familial Mediterranean fever in Turkish children. J Pediatr Gastroenterol Nutr. 2013;56(5):498–502.PubMedCrossRefGoogle Scholar
  142. 142.
    Mora AJ, Wolfsohn DM. The management of gastrointestinal disease in Hermansky-Pudlak syndrome. J Clin Gastroenterol. 2011;45(8):700–2.PubMedCrossRefGoogle Scholar
  143. 143.
    Almeida de Jesus A, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol. 2013;147(3):155–74.PubMedCrossRefGoogle Scholar
  144. 144.
    Speckmann C, et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol. 2013;149(1):133–41.PubMedCrossRefGoogle Scholar
  145. 145.
    Latour S, Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol. 2015;39:115–23.PubMedCrossRefGoogle Scholar
  146. 146.
    Pedersen J, et al. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol Med. 2014;20(11):652–65.PubMedCrossRefGoogle Scholar
  147. 147.
    Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol. 2015;35(4):331–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Filipovich AH. The expanding spectrum of hemophagocytic lymphohistiocytosis. Curr Opin Allergy Clin Immunol. 2011;11(6):512–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Li Q, et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology. 2016;150(5):1196–207.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Sawyer SL, Emerman M, Malik HS. Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals. PLoS Pathog. 2007;3(12):e197.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Yu S, et al. Identification of tripartite motif-containing 22 (TRIM22) as a novel NF-kappaB activator. Biochem Biophys Res Commun. 2011;410(2):247–51.PubMedCrossRefGoogle Scholar
  152. 152.
    Duan Z, et al. Identification of TRIM22 as a RING finger E3 ubiquitin ligase. Biochem Biophys Res Commun. 2008;374(3):502–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Gastroenterology, Hepatology and NutritionThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Division of Allergy and ImmunologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations