Acoustic-Prosodic Automatic Personality Trait Assessment for Adults and Children

  • Rubén Solera-Ureña
  • Helena Moniz
  • Fernando Batista
  • Ramón F. Astudillo
  • Joana Campos
  • Ana Paiva
  • Isabel Trancoso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10077)

Abstract

This paper investigates the use of heterogeneous speech corpora for automatic assessment of personality traits in terms of the Big-Five OCEAN dimensions. The motivation for this work is twofold: the need to develop methods to overcome the lack of children’s speech corpora, particularly severe when targeting personality traits, and the interest on cross-age comparisons of acoustic-prosodic features to build robust paralinguistic detectors. For this purpose, we devise an experimental setup with age mismatch utilizing the Interspeech 2012 Personality Sub-challenge, containing adult speech, as training data. As test data, we use a corpus of children’s European Portuguese speech. We investigate various features sets such as the Sub-challenge baseline features, the recently introduced eGeMAPS features and our own knowledge-based features. The preliminary results bring insights into cross-age and -language detection of personality traits in spontaneous speech, pointing out to a stable set of acoustic-prosodic features for Extraversion and Agreeableness in both adult and child speech.

Keywords

Computational paralinguistics Automatic personality assessment OCEAN Cross-lingual Cross-age 

References

  1. 1.
    Batista, F., Moniz, H., Trancoso, I., Mamede, N.J.: Bilingual experiments on automatic recovery of capitalization and punctuation of automatic speech transcripts. IEEE Trans. Audio Speech Lang. Proces. 20(2), 474–485 (2012). Special Issue on New Frontiers in Rich TranscriptionCrossRefGoogle Scholar
  2. 2.
    Campos, J., Oliveira, P., Paiva, A.: Looking for conflict: gaze dynamics in a dyadic mixed-motive game. Auton. Agents Multi-Agent Syst. 30(1), 112–135 (2016)CrossRefGoogle Scholar
  3. 3.
    Caspi, A., Harrington, H., Milne, B., Amell, J., Theodore, R., Moffitt, T.: Children’s behavioral styles at age 3 are linked to their adult personality traits at age 26. J. Pers. 71(4), 495–514 (2003)CrossRefGoogle Scholar
  4. 4.
    Cloninger, S.: Conceptual issues in personality theory. In: Corr, P., Matthews, G. (eds.) The Cambridge Handbook of Personality Psychology, vol. 4, pp. 3–26. Cambridge University Press, Cambridge (2009). Chap. 8CrossRefGoogle Scholar
  5. 5.
    Eyben, F., Scherer, K.R., Schuller, B.W., Sundberg, J., André, E., Busso, C., Devillers, L.Y., Epps, J., Laukka, P., Narayanan, S.S., Truong, K.P.: The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective computing. IEEE Trans. Affect. Comput. 7(2), 190–202 (2016)CrossRefGoogle Scholar
  6. 6.
    Eyben, F., Weninger, F., Gross, F., Schuller, B.: Recent developments in openSMILE, the Munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM International Conference on Multimedia, New York, NY, USA, pp. 835–838, October 2013Google Scholar
  7. 7.
    Kagan, J.: Three pleasing ideas. Am. Psychol. 51, 901–908 (1996)CrossRefGoogle Scholar
  8. 8.
    Kelley, H., Beckman, L., Fischer, C.: Negotiating the division of a reward under incomplete information. J. Exp. Soc. Psychol. 3(4), 361–398 (1967)CrossRefGoogle Scholar
  9. 9.
    Lewis, M.: Altering Fate: Why the Past does not Predict the Future. Guilford Press, New York (1997)Google Scholar
  10. 10.
    Maćkiewicz, M., Cieciuch, J.: The picture based personality survey for children - a new instrument to measure the big five in childhood. In: Proceedings of the 11th Conference on Psychological Assessment, Riga, Latvia, September 2011Google Scholar
  11. 11.
    Mairesse, F., Walker, M., Mehl, M., Moore, R.: Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Intell. Res. 30(1), 457–500 (2007)MATHGoogle Scholar
  12. 12.
    Meinedo, H., Viveiros, M., Neto, J.: Evaluation of a live broadcast news subtitling system for Portuguese. In: Proceedigs of Interspeech 2008, Brisbane, Australia, pp. 508–511, September 2008Google Scholar
  13. 13.
    Mohammadi, G., Vinciarelli, A.: Automatic personality perception: prediction of trait attribution based on prosodic features. IEEE Trans. Affect. Comput. 3(3), 273–284 (2012)CrossRefGoogle Scholar
  14. 14.
    Polzehl, T., Moeller, S., Metze, F.: Automatically assessing acoustic manifestations of personality in speech. In: Spoken Language Technology Workshop, Berkeley, CA, USA, pp. 7–12, December 2010Google Scholar
  15. 15.
    Polzehl, T., Moeller, S., Metze, F.: Automatically assessing personality from speech. In: International Conference on Semantic Computing, Pittsburgh, PA, USA, pp. 134–140, September 2010Google Scholar
  16. 16.
    Polzehl, T., Moeller, S., Metze, F.: Modeling speaker personality using voice. In: Proceedings of Interspeech 2011, Florence, Italy, pp. 2369–2372, August 2011Google Scholar
  17. 17.
    Rammstedt, B., John, O.: Measuring personality in one minute or less: a 10-item short version of the big five inventory in English and German. J. Res. Pers. 41, 203–212 (2007)CrossRefGoogle Scholar
  18. 18.
    Roberts, B., Walton, K., Viechtbauer, W.: Patterns of mean-level change in personality traits across the life course: a meta-analysis of longitudinal studies. Psychol. Bull. 132(1), 1–25 (2006)CrossRefGoogle Scholar
  19. 19.
    Schuller, B., Steidl, S., Batliner, A., Nöth, E., Vinciarelli, A., Burkhardt, F.: The INTERSPEECH 2012 speaker trait challenge. In: Proceedings of Interspeech 2012, Portland, OR, USA, September 2012Google Scholar
  20. 20.
    Schuller, B., Steidl, S., Batliner, A., Nöth, E., Vinciarelli, A., Burkhardt, F., van Son, R., Weninger, F., Eyben, F., Bocklet, T., Mohammadi, G., Weiss, B.: A survey on perceived speaker traits: personality, likability, pathology, and the first challenge. Comput. Speech Lang. 29(1), 100–131 (2015)CrossRefGoogle Scholar
  21. 21.
    Vinciarelli, A., Mohammadi, G.: A survey of personality computing. IEEE Trans. Affect. Comput. 5(3), 273–291 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Rubén Solera-Ureña
    • 1
  • Helena Moniz
    • 1
    • 2
  • Fernando Batista
    • 1
    • 3
  • Ramón F. Astudillo
    • 1
    • 4
  • Joana Campos
    • 5
    • 6
  • Ana Paiva
    • 5
    • 6
  • Isabel Trancoso
    • 1
    • 6
  1. 1.Spoken Language Systems LaboratoryINESC-ID LisboaLisboaPortugal
  2. 2.FLUL/CLUL, Universidade de LisboaLisboaPortugal
  3. 3.ISCTE-IUL – Instituto Universitário de LisboaLisboaPortugal
  4. 4.Unbabel Inc.LisboaPortugal
  5. 5.Intelligent Agents and Synthetic Characters Group, INESC-ID LisboaLisboaPortugal
  6. 6.Instituto Superior Técnico, Universidade de LisboaLisboaPortugal

Personalised recommendations