End-to-End Research Data Management Workflows

A Case Study with Dendro and EUDAT
  • Fábio Silva
  • Ricardo Carvalho Amorim
  • João Aguiar Castro
  • João Rocha da Silva
  • Cristina Ribeiro
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 672)

Abstract

Depositing and sharing research data is at the core of open science practices. However, institutions in the long tail of science are struggling to properly manage large amounts of data. Support for research data management is still fragile, and most existing solutions adopt generic metadata schemas for data description. These might be unable to capture the production contexts of many datasets, making them harder to interpret. EUDAT is a large ongoing EU-funded project that aims to provide a platform to help researchers manage their datasets and share them when they are ready to be published. DataPublication@U.Porto is an EUDAT Data Pilot proposing the integration between Dendro, a prototype research data management platform, and the EUDAT B2Share module. The goal is to offer researchers a streamlined workflow: they organize and describe their data in Dendro as soon as they are available, and decide when to deposit in a data repository. Dendro integrates with the API of B2Share, automatically filling the standard metadata descriptors and complementing the data package with additional files for domain-specific descriptors. Our integration offers researchers a simple but complete workflow, from data preparation and description to data deposit.

References

  1. 1.
    Amorim, R.C., Castro, J.A., da Silva, J.R., Ribeiro, C.: LabTablet: semantic metadata collection on a multi-domain laboratory notebook. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 193–205. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13674-5_19 Google Scholar
  2. 2.
    Amorim, R.C., Castro, J.A., da Silva, J.R., Ribeiro, C.: A comparison of research data management platforms: architecture, flexible metadata and interoperability. Univ. Access Inf. Soc., 1–12 (2016). doi:10.1007/s10209-016-0475-y
  3. 3.
    Assante, M., Candela, L., Castelli, D., Tani, A.: Are scientific data repositories coping with research data publishing? Data Sci. J. 15, 6 (2016). doi:10.5334/dsj-2016-006 CrossRefGoogle Scholar
  4. 4.
    Castro, J.A., da Silva, J.R., Ribeiro, C.: Creating lightweight ontologies for dataset description: practical applications in a cross-domain research data management workflow. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (2014) doi:10.1109/JCDL.2014.6970185
  5. 5.
    Heidorn, P.B.: Shedding light on the dark data in the long tail of science. Libr. Trends 57(2), 280–299 (2008). doi:10.1353/lib.0.0036 CrossRefGoogle Scholar
  6. 6.
    Rice, R., Haywood, J.: Research data management initiatives at University of Edinburgh. Int. J. Digit. Curation 6(2), 232–244 (2011). doi:10.2218/ijdc.v6i2.199 CrossRefGoogle Scholar
  7. 7.
    da Silva, J.R., Ribeiro, C., Lopes, J.C.: The Dendro research data management platform: applying ontologies to long-term preservation in a collaborative environment. In: iPRES Conference Proceedings (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Fábio Silva
    • 1
  • Ricardo Carvalho Amorim
    • 1
  • João Aguiar Castro
    • 1
  • João Rocha da Silva
    • 1
  • Cristina Ribeiro
    • 1
  1. 1.INESC TEC—Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations