Exploring Term Networks for Semantic Search over RDF Knowledge Graphs

  • Edgard Marx
  • Konrad Höffner
  • Saeedeh Shekarpour
  • Axel-Cyrille Ngonga Ngomo
  • Jens Lehmann
  • Sören Auer
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 672)

Abstract

Information retrieval approaches are considered as a key technology to empower lay users to access the Web of Data. A large number of related approaches such as Question Answering and Semantic Search have been developed to address this problem. While Question Answering promises more accurate results by returning a specific answer, Semantic Search engines are designed to retrieve the best top-\(K\) ranked resources. In this work, we propose *path, a Semantic Search approach that explores term networks for querying RDF knowledge graphs. The adequacy of the approach is evaluated employing benchmark datasets against state-of-the-art Question Answering as well as Semantic Search systems. The results show that *path achieves better F\(_1\)-score than the currently best performing Semantic Search system.

References

  1. 1.
    Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 83–97. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_6 CrossRefGoogle Scholar
  2. 2.
    Cheng, G., Qu, Y.: Searching linked objects with Falcons: approach, implementation and evaluation. Int. J. Semant. Web Inf. Syst. 5(3), 49–70 (2009)CrossRefGoogle Scholar
  3. 3.
    Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V.C., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: Proceedings of the Thirteenth ACM Conference on Information and Knowledge Management (CIKM), pp. 652–659. ACM (2004)Google Scholar
  4. 4.
    Halpin, H., Herzig, D.M., Mika, P., Blanco, R., Pound, J., Thompson, H.S., Tran, D.T.: Evaluating ad-hoc object retrieval. In: Proceedings of the International Workshop on Evaluation of Semantic Technologies (IWEST 2010), 9th International Semantic Web Conference (ISWC 2010), Shanghai, PR China, November 2010Google Scholar
  5. 5.
    Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.: Survey on challenges of Question Answering in the Semantic Web. Submitted to the Semant. Web J. (2016). http://www.semantic-web-journal.net/content/survey-challenges-question-answering-semantic-web
  6. 6.
    Hudson, R.A.: Language Networks: The New Word Grammar. Oxford Linguistics, Oxford University Press, Oxford (2007)Google Scholar
  7. 7.
    Luhn, H.P.: A statistical approach to mechanized encoding and searching of literary information. IBM J. Res. Dev. 1(4), 309–317 (1957)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mangold, C.: A survey and classification of semantic search approaches. Int. J. Metadata Semant. Ontol. 2(1), 23–34 (2007)CrossRefGoogle Scholar
  9. 9.
    Marx, E., Usbeck, R., Ngonga Ngomo, A.C., Höffner, K., Lehmann, J., Auer, S.: Towards an open question answering architecture. In: SEMANTiCS (2014)Google Scholar
  10. 10.
    Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.: Sindice.com: a document-oriented lookup index for open linked data. IJMSO 3(1), 37–52 (2008)CrossRefGoogle Scholar
  11. 11.
    Pearsall, J., Hanks, P., Soanes, C., Stevenson, A. (eds.): Oxford Dictionary of English (Kindle Edition) (2010)Google Scholar
  12. 12.
    Reisburg, D.: Cognition: Exploring the Science of the Mind. Norton, New York (1997)Google Scholar
  13. 13.
    de Saussure, F.: Course in General Linguistics. McGraw-Hill, New York (1959). (Translated by Wade Baskin)Google Scholar
  14. 14.
    Shekarpour, S., Marx, E., Ngomo, A.C.N., Auer, S.: SINA: semantic interpretation of user queries for question answering on interlinked data. J. Web Semant. 30, 39–51 (2015)CrossRefGoogle Scholar
  15. 15.
    Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. J. Documentation 28(1), 11–21 (1972)CrossRefGoogle Scholar
  16. 16.
    Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker, S.: Sig.ma: live views on the web of data. J. Web Semant. 8(4), 355–364 (2010)CrossRefGoogle Scholar
  17. 17.
    Unger, C., Forascu, C., Lopez, V., Ngomo, A.C.N., Cabrio, E., Cimiano, P., Walter, S.: Question answering over linked data (QALD-4). In: Working Notes for CLEF 2014 Conference (2014)Google Scholar
  18. 18.
    Virgilio, R., Maccioni, A.: Distributed keyword search over RDF via MapReduce. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 208–223. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07443-6_15 CrossRefGoogle Scholar
  19. 19.
    Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., Pan, Y.: Semplore: a scalable IR approach to search the web of data. J. Web Semant. 7(3), 177 (2009)CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Liu, Q.L., Zhang, J., Wang, H.F., Pan, Y., Yu, Y.: Semplore: an IR approach to scalable hybrid query of semantic web data. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 652–665. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0_47 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Edgard Marx
    • 1
    • 3
  • Konrad Höffner
    • 1
  • Saeedeh Shekarpour
    • 4
  • Axel-Cyrille Ngonga Ngomo
    • 1
  • Jens Lehmann
    • 2
  • Sören Auer
    • 2
  1. 1.AKSWUniversity of LeipzigLeipzigGermany
  2. 2.Computer Science InstituteUniversity of BonnBonnGermany
  3. 3.Instituto de Pesquisa e Desenvolvimento Albert SchirmerTeófilo OtoniBrazil
  4. 4.Knoesis Research CenterFairbornUSA

Personalised recommendations