Advertisement

\(PO^2\) - A Process and Observation Ontology in Food Science. Application to Dairy Gels

  • Liliana Ibanescu
  • Juliette Dibie
  • Stéphane Dervaux
  • Elisabeth Guichard
  • Joe Raad
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 672)

Abstract

This paper focuses on the knowledge representation task for an interdisciplinary project called Delicious concerning the production and transformation processes in food science. The originality of this project is to combine data from different disciplines like food composition, food structure, sensorial perception and nutrition. Available data sets are described using different vocabularies and are stored in different formats. Therefore there is a need to define an ontology, called \(PO^2\) (Process and Observation Ontology), as a common and standardized vocabulary for this project. The scenario 6 of the NeON methodology was used for building \(PO^2\) and the core component is implemented in OWL. By making use of \(PO^2\), data from the project were structured and an use case is presented here. \(PO^2\) aims to play a key role as the representation layer of the querying and simulation systems of Delicious project.

Keywords

Process and Observation Ontology Domain ontology 

References

  1. 1.
    Boisard, L., Andriot, I., Martin, C., Septier, C., Boissard, V., Salles, C., Guichard, E.: The salt and lipid composition of model cheeses modifies in-mouth flavour release and perception related to the free sodium ion content. Food Chem. 145, 437–444 (2014)CrossRefGoogle Scholar
  2. 2.
    Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The NeOn methodology for ontology engineering. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Motta, A. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-24794-1_2 CrossRefGoogle Scholar
  3. 3.
    Dibie, J., Dervaux, S., Doriot, E., Ibanescu, L., Pénicaud, C.: \([MS]^2O\) – a multi-scale and multi-step ontology for transformation processes: application to micro-organisms. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 163–176. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40985-6_13 CrossRefGoogle Scholar
  4. 4.
    Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann (2012)Google Scholar
  5. 5.
    Feron, G., Ayed, C., Qannari, E.M., Courcoux, P., Laboure, H., Guichard, E.: Understanding aroma release from model cheeses by a statistical multiblock approach on oral processing. PLoS ONE 9(4), 1–15 (2014)CrossRefGoogle Scholar
  6. 6.
    Grubic, T., Fan, I.S.: Supply chain ontology: review, analysis and synthesis. Comput. Ind. 61(8), 776–786 (2010)CrossRefGoogle Scholar
  7. 7.
    Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Staab, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, vol. 2009, pp. 1–17. Springer, Heidelberg (2009). doi: 10.1007/978-3-540-92673-3_0 CrossRefGoogle Scholar
  8. 8.
    Muljarto, A.-R., Salmon, J.-M., Neveu, P., Charnomordic, B., Buche, P.: Ontology-based model for food transformation processes - application to winemaking. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 329–343. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-13674-5_30 Google Scholar
  9. 9.
    Rospocher, M., Ghidini, C., Serafini, L.: An ontology for the business process modelling notation. In: Garbacz, P., Kutz, O. (eds.) Formal Ontology in Information Systems - Proceedings of the Eighth International Conference, FOIS , 22–25 September 2014, Rio de Janeiro. Frontiers in Artificial Intelligence and Applications, vol. 267, pp. 133–146. IOS Press (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Liliana Ibanescu
    • 1
  • Juliette Dibie
    • 1
  • Stéphane Dervaux
    • 1
  • Elisabeth Guichard
    • 2
  • Joe Raad
    • 1
  1. 1.UMR MIA-Paris, AgroParisTech, INRA, Université Paris-SaclayParisFrance
  2. 2.UMR 1324 INRA, UMR 6265 CNRS, Université de BourgogneDijonFrance

Personalised recommendations