KopperCoin – A Distributed File Storage with Financial Incentives

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10060)


One of the current problems of peer-to-peer-based file storage systems like Freenet is missing participation, especially of storage providers. Users are expected to contribute storage resources but may have little incentive to do so. In this paper we propose KopperCoin, a token system inspired by Bitcoin’s blockchain which can be integrated into a peer-to-peer file storage system. In contrast to Bitcoin, KopperCoin does not rely on a proof of work (PoW) but instead on a proof of retrievability (PoR). Thus it is not computationally expensive and instead requires participants to contribute file storage to maintain the network. Participants can earn digital tokens by providing storage to other users, and by allowing other participants in the network to download files. These tokens serve as a payment mechanism. Thus we provide direct reward to participants contributing storage resources.


Blockchain Cloud storage Cryptocurrency Peer-to-peer Proof of retrievability 


  1. 1.
    Antonopoulos, A.M.: Mastering Bitcoin, Unlocking Digital Cryptocurrencies. O’Reilly Media, Sebastopol (2014)Google Scholar
  2. 2.
    Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged Byzantine impostors. Technical report YALEU/DCS/TR-1332, Yale University Department of Computer Science (2005)Google Scholar
  3. 3.
    Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of Space: When Space is of the Essence. Cryptology ePrint Archive, Report 2013/805 (2013)Google Scholar
  4. 4.
    Bennett, K., Stef, T., Grothoff, C., Horozov, T., Patrascu, I.: The GNeT whitepaper, June 2002Google Scholar
  5. 5.
    Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001). doi: 10.1007/3-540-44702-4_4 CrossRefGoogle Scholar
  6. 6.
    Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. Cryptology ePrint Archive, Report 2013/796 (2013)Google Scholar
  7. 7.
    Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45472-5_28 Google Scholar
  8. 8.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi: 10.1007/3-540-47721-7_12 Google Scholar
  9. 9.
    filecoin.io: Filecoin: a cryptocurrency operated file storage network (2014). http://filecoin.io/filecoin.pdf
  10. 10.
    King, S.: Primecoin: cryptocurrency with prime number proof-of-work (2013). http://primecoin.io/bin/primecoin-paper.pdf
  11. 11.
    King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake (2012). https://peercoin.net/whitepaper
  12. 12.
    Ma, R.T.B., Lee, S.C.M., Lui, J.C.S., Yau, D.K.Y.: Incentive and service differentiation in P2P networks: a game theoretic approach. IEEE/ACM Trans. Netw. 14(5), 978–991 (2006)CrossRefGoogle Scholar
  13. 13.
    Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). doi: 10.1007/3-540-45748-8_5 CrossRefGoogle Scholar
  14. 14.
    Merkle, R.C.: Method of providing digital signatures. US Patent 4,309,569, 5 Jan 1982. https://www.google.com/patents/US4309569
  15. 15.
    Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). doi: 10.1007/3-540-48184-2_32 Google Scholar
  16. 16.
    Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin work for data preservation. In: Security and Privacy, pp. 475–490. IEEE (2014)Google Scholar
  17. 17.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://bitcoin.org/bitcoin.pdf
  18. 18.
    Sengupta, B., Bag, S., Ruj, S., Sakurai, K.: Retricoin: Bitcoin based on compact proofs of retrievability. ICDCN 2016. ACM (2016). http://doi.acm.org/10.1145/2833312.2833317
  19. 19.
    Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89255-7_7 CrossRefGoogle Scholar
  20. 20.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Comput. Commun. Rev. 31(4), 149–160 (2001)CrossRefGoogle Scholar
  21. 21.
    Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital currencies. Cryptology ePrint Archive, Report 2015/464 (2015)Google Scholar
  22. 22.
    Wilkinson, S., Buterin, V.: Storj: peer-to-peer cloud storage network (2014). https://storj.io/storj.pdf
  23. 23.
    Yoo, S.Y.: How a NASHX transaction works (2013). http://nashx.com/HowItWorks
  24. 24.
    Young, A., Yung, M.: Auto-recoverable auto-certifiable cryptosystems. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 17–31. Springer, Heidelberg (1998). doi: 10.1007/BFb0054114 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Distributed SystemsUlm UniversityUlmGermany

Personalised recommendations