Comparative Study of the Stability of Stratification and the Food Web Structure in the Meromictic Lakes Shira and Shunet (South Siberia, Russia)

  • Denis RogozinEmail author
  • Egor Zadereev
  • Igor Prokopkin
  • Alexander Tolomeev
  • Yuri Barkhatov
  • Elena Khromechek
  • Nadezhda Degermendzhi
  • Anton Drobotov
  • Andrei Degermendzhi
Part of the Ecological Studies book series (ECOLSTUD, volume 228)


Lakes Shira and Shunet (South Siberia, Russia) are saline ectogenic meromictic lakes. This meromixis is annually sustained by ice formation in winter. In spring due to melting of ice the second halocline is formed in the near-surface layers of mixolimnion that prevents the lakes from full circulation. During our observations (1998–2014) the mixolimnion in both the lakes was monomictic and undergone full circulation in autumn. Purple and green sulphur bacteria are abundant in the chemocline ; the phytoplankton diversity is relatively low; the major constituents of the zooplankton community are several genera of ciliates, calanoid copepod Arctodiaptomus salinus, rotifers Brachionus plicatilis and Hexarthra sp.; Paleolimnological study of the content of organic matter in sediments and the concentration of okenone demonstrated that Lake Shira was holomictic about 90 years ago when the water level was low. It became strongly meromictic just after the water level increase in the 1940s.


Bacterial Community Hydrogen Sulphide Weather Parameter Purple Sulphur Bacterium Meromictic Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research on lakes Shira and Shunet was partially supported by the Council on grants from the President of the Russian Federation for support of leading scientific schools (grant NSh-9249.2016.5).


  1. Arvola L, Glen G, Livingstone DM, Järvinen M, Blenckner T, Dokulil MT, Jennings E, Aonghusa CN, Nõges P, Nõges T, Weyhenmeyer GA (2010) The impact of the changing climate on the thermal characteristics of lakes. In: Glen G (ed) The impact of climate change on European lakes, Aquatic ecology series, vol 4. Springer, Dordrecht, New York, pp 85–102Google Scholar
  2. Belolipetskii VM, Genova SN (2008) Calculation of vertical profiles of temperature and salinity in Shira Lake. Computational Technologies. Bull KazNU (mathematics, mechanics and informatics issue) 3(58):261–266 (in Russian)Google Scholar
  3. Belolipetsky PV, Belolipetskii VM, Genova SN, Mooij WM (2010) Numerical modelling of vertical stratification of Shira Lake in summer. Aquat Ecol 44:561–570CrossRefGoogle Scholar
  4. De Stasio B, Hill D, Kleinhans J, Nibbelink N, Magnuson J (1996) Potential effects of global climate change on small north-temperate lakes: physics, fish and plankton. Limnol Oceanogr 41:1136–1149CrossRefGoogle Scholar
  5. Degermendzhy AG, Gaevsky NA, Belonog NP, Ivanova EA, Rogozin DYu, Koltahsev AA, Gribalev ES (2003) Izychenie physico-chimicheskix I biologicheskix charakteristik dvux balneologicheskix ozer (Matarak, Shunet, Khakassia). Vestnik Krasnoyarskogo gosudarstvennogo universiteta 5:107–115 (In Russian)Google Scholar
  6. Degermendzhy AG, Zadereev YS, Rogozin DY, Prokopkin IG, Barkhatov YV, Tolomeev AP, Khromechek EB, Janse JP, Mooij WM, Gulati RD (2010) Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia). Aquat Ecol 44:619–632CrossRefGoogle Scholar
  7. Dressler M, Hubener T, Gors S, Werner P, Selig U (2007) Multi-proxy reconstruction of trophic state, hypolimnetic anoxia and phototrophic sulphur bacteria abundance in a dimictic lake in Nothern Germany over past 80 years. J Paleolimnol 37:205–219CrossRefGoogle Scholar
  8. Gaevsky NA, Zotina TA, Gorbaneva TB (2002) Vertical structure and photosynthetic activity of Lake Shira phytoplankton. Aquat Ecol 36:165–178CrossRefGoogle Scholar
  9. Garneau M-E, Posch T, Hitz G, Pomerleau F, Pradalier C, Siegwart R, Pernthaler J (2013) Short-term displacement of Planktothrix rubescens (cyanobacteria) in a pre-alpine lake observed using an autonomous sampling platform. Limnol Oceanogr 58:1892–1906CrossRefGoogle Scholar
  10. Genova SN, Belolipetskii VM, Rogozin DY, Degermendzhy AG, Mooij WM (2010) A one-dimensional model of vertical stratification of Lake Shira focused on winter conditions and ice cover. Aquat Ecol 44:571–584CrossRefGoogle Scholar
  11. Gladyshev MI, Emelianova AY, Kalachova GS, Zotina TA, Gaevsky NA, Zhilenkov MD (2000) Gut content analysis of Gammarus lacustris from a Siberian lake using biochemical and biophysical methods. Hydrobiologia 431:155–163CrossRefGoogle Scholar
  12. Hondzo M, Stefan HG (1993) Regional water temperature characteristics of lakes subjected to climate change. Clim Chang 24:187–211CrossRefGoogle Scholar
  13. Hutchinson GE (1957) A Treatise on Limnology, Geography, Physics and Chemistry, vol 1. Wiley, New YorkGoogle Scholar
  14. Kalacheva GS, Gubanov VG, Gribovskaya IV, Gladchenko IA, Zinenko GK, Savitsky SV (2002) Chemical analysis of Lake Shira water (1997–2000). Aquat Ecol 36:23–141Google Scholar
  15. Kalugin I, Darin A, Rogozin D, Tretyakov G (2013) Seasonal and centennial cyclesof carbonate mineralization during the past 2500 years from varved sediment in Lake Shira, South Siberia. Quat Int 290–291:245–252CrossRefGoogle Scholar
  16. Khromechek EB, Barkhatov YV, Rogozin DY (2010) Densities and distribution of flagellates and ciliates in the chemocline of saline, meromictic Lake Shunet (Siberia, Russia). Aquat Ecol 44:497–511CrossRefGoogle Scholar
  17. Krivosheev AS, Khasanov AP (1990) Therapeutic lakes of Krasnoyarsk Region. Krasnoyarsk Publishing House, Krasnoyarsk (In Russian)Google Scholar
  18. Kopylov AI, Kosolapov DB, Romanenko AV, Degermendzhy AG (2002) Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquat Ecol 36:179–204CrossRefGoogle Scholar
  19. Lawrence JR, Haynes RC, Hammer UT (1978) Contribution of photosynthetic green sulphur bacteria to total primary production in a meromictic saline lake. Verh Int Verein Limnol 20:201–207Google Scholar
  20. Leavitt PR (1993) A review of factors that regulate carotenoids and chlorophyll deposition and fossil pigment abundance. J paleolimnol 9:109–127CrossRefGoogle Scholar
  21. Liu W, Bocaniov SA, Lamb KG, Smith REH (2014) Three dimensional modeling of the effects of changes in meteorological forcing on the thermal structure of Lake Erie. J Great Lakes Res 40:827–840CrossRefGoogle Scholar
  22. Lunina ON, Bryantseva IA, Akimov VN, Rusanov II, Rogozin DY, Barinova ES, Lysenko AM, Pimenov NV (2007a) Seasonal changes in the structure of the anoxygenic photosynthetic bacterial community in Lake Shunet, Khakassia. Microbiology (Translated from Mikrobiologiya) 76:368–379Google Scholar
  23. Lunina ON, Bryantseva IA, Akimov VN, Rusanov II, Barinova ES, Lysenko AM, Rogozin DY, Pimenov NV (2007b) Anoxigenic phototrophic bacteria community of Lake Shira (Khakassia). Microbiology (Translated from Mikrobiologiya) 76:469–479Google Scholar
  24. Mooij WM, Trolle D, Jeppesen E, Arhonditsis G, Belolipetsky PV, Chitamwebwa DBR, Degermendzhy AG, DeAngelis DL, De Senerpont Domis LN, Downing AS, Elliott JA, Fragoso CR, Gaedke U, Genova SN, Gulati RD, Håkanson L, Hamilton DP, Hipsey MR, ‘t Hoen J, Hülsmann S, FH L, Makler-Pick V, Petzoldt T, Prokopkin IG, Rinke K, Schep SA, Tominaga K, Van Dam AA, Van Nes EH, Wells SA, Janse JH (2010) Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat Ecol 44:633–667CrossRefGoogle Scholar
  25. Overmann J, Beatty JT, Hall KJ (1994) Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake. FEMS Microbiol Ecol 15:309–320CrossRefGoogle Scholar
  26. Overmann J (1997) Mahoney Lake: a case study of the ecological significance of phototrophic sulfur bacteria. Adv Microb Ecol 15:251–288CrossRefGoogle Scholar
  27. Overmann J, Sandmann G, Hall KG, Northcote T (1993) Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada. Aquat Sci 55:1015–1621CrossRefGoogle Scholar
  28. Parnachev VP, Degermendzhy AG (2002) Geographical, geological and hydrochemical distribution of saline lakes in Khakasia, Southern Syberia. Aquat Ecol 36:107–122CrossRefGoogle Scholar
  29. Pimenov NV, Rusanov II, Karnachuk OV, Rogozin DY, Bryantseva IA, Lunina ON, Yusupov SK, Parnachev VP, Ivanov MV (2003) Microbial processes of the carbon and sulphur cycles in Lake Shira (Khakasia). Microbiology (Translated from Mikrobiologiya) 72:221–229Google Scholar
  30. Prokopkin IG, Barkhatov YV, Khromechek EB (2014) A one-dimensional model for phytoflagellate distribution in the meromictic lake. Ecol Model 288:1–8CrossRefGoogle Scholar
  31. Prokopkin IG, Mooij WM, Janse JH, Degermendzhy AG (2010) A general one-dimensional vertical ecosystem model of Lake Shira (Russia, Khakasia): description, parametrization and analysis. Aquat Ecol 44:585–618CrossRefGoogle Scholar
  32. Robertson DM, Ragotzkie R (1990) Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat Sci 52:360–380CrossRefGoogle Scholar
  33. Rogozin DY, Pimenov NV, Kosolapov DB, Chan’kovskaya YV, Degermendzhy AG (2005) Thin layer vertical distributions of purple sulfur bacteria in chemocline zones of meromictic Lakes Shira and Shunet (Khakassia). In: Doklady Biological Sciences. Proceedings of the Russian Academy of Sciences, vol 400, pp 54–56 (Translated from Doklady Akademii Nauk (2005) 400: 426–429)Google Scholar
  34. Rogozin DY, Degermendzhy AG (2008) Hydraulically-operated thin-layer sampler for sampling heterogeneous water columns. J Sib Fed Univ 1:111–117Google Scholar
  35. Rogozin DY, Genova SV, Gulati RD, Degermendzhy AG (2010a) Some generalizations on stratification and vertical mixing in meromictic Lake Shira, Russia, in the period 2002–2009. Aquat Ecol 44:485–496CrossRefGoogle Scholar
  36. Rogozin DY, Trusova MY, Khromechek EB, Degermendzhy AG (2010b) Microbial community of the chemocline of meromictic Lake Shunet during summer stratification. Microbiology (Translated from Mikrobiologiya) 79:253–261Google Scholar
  37. Rogozin DY, Zykov VV, Chernetsky MY, Degermendzhy AG, Gulati RD (2009) Effect of winter conditions on distributions of anoxic phototrophic bacteria in two meromictic lakes in Siberia, Russia. Aquat Ecol 43:661–672CrossRefGoogle Scholar
  38. Rogozin DY, Zykov VV, Degermendzhi AG (2012) Ecology of purple sulfur bacteria in the highly stratified meromictic Lake Shunet (Siberia, Khakassia) in 2002–2009. Microbiology 81:727–735CrossRefGoogle Scholar
  39. Rogozin DY, Zykov VV, Kalugin IA, Daryin AV, Degermendzhy AG (2011) Carotenoids of phototrophic organisms in bottom sediments of meromictic Lake Shira (Siberia, Russia) as an indicator of past stratification. Dokl Biol Sci (Proc Russ Acad Sci) 439:228 (Translated from Doklady Akademii Nauk 439:282–285)Google Scholar
  40. Rogozin DY, Zykov VV, Tarnovsky MO (2016) Dynamics of purple sulfur bacteria in saline meromictic Lake Shira (Khakasia, Siberia) for the period 2007–2013. Microbiology (Translated from Mikrobiologiya) 81:93–101Google Scholar
  41. Savvichev AS, Rusanov II, Rogozin DY, Zakharova EE, Lunina ON, Yusupov SK, Pimenov NV, Degermendzhy AG, Ivanov MV (2005) Microbiological and isotopic–geochemical investigations of meromictic lakes in Khakasia in winter. Microbiology (Translated from Mikrobiologiya) 74:477–485Google Scholar
  42. Schmidt R, Psenner R, Muller J, Indinger P, Kamenik C (2002) Impact of late glacial variations on stratification and trophic state of the meromictic lake Landsee (Austria): validation of a conceptual model by multi proxy studies. J Limnol 61:49–60CrossRefGoogle Scholar
  43. Tolomeev AP, Sushchik NN, Gulati RD, Makhutova ON, Kalacheva GS, Zotina TA (2010) Feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) using fatty acid trophic markers in seston food in two salt lakes in South Siberia (Khakasia, Russia). Aquat Ecol 44:513–530CrossRefGoogle Scholar
  44. Tolomeyev AP, Zadereev ES, Degermendzhy AG (2006) Fine stratified distribution of Gammarus lacustris Sars (Crustacea: Amphipoda) in the pelagic zone of the meromictic Lake Shira (Khakassia, Russia). Dokl Biochem Biophys 411:346–348CrossRefPubMedGoogle Scholar
  45. Tonolla M, Peduzzi S, Hahn D, Peduzzi R (2003) Spatio-temporal distribution of phototrophic sulphur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). FEMS Microbiol Ecol 43:89–98CrossRefPubMedGoogle Scholar
  46. Van Gemerden H, Tughan CS, de Wit R, Gerbert RA (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62:87–102CrossRefGoogle Scholar
  47. Vuik C (1993) Some historical notes about the Stefan problem. Nieuw Archief voor Wiskunde 11(2):157–167Google Scholar
  48. Wilhelm FM, Schindler DW, McNaught AS (2000) The influence of experimental scale on estimating the predation rate of Gammarus lacustris (Crustacea: Amphipoda) on Daphnia in an alpine lake. J Plankton Res 22:1719–1734CrossRefGoogle Scholar
  49. Yemelyanova AY, Temerova TA, Degermendzhy AG (2002) Distribution of Gammarus lacustris Sars (Amphipoda, Gammaridae) in Lake Shira (Khakasia, Siberia) and laboratory study of its growth characteristics. Aquat Ecol 36:245–256CrossRefGoogle Scholar
  50. Zadereev ES, Tolomeev AP, Drobotov AV, Kolmakova AA (2014) The effect of weather variability on the spatial and seasonal dynamics of dissolved and suspended nutrients in the water column of meromictic Lake Shira. Contem Probl Ecol 7:384–396CrossRefGoogle Scholar
  51. Zadereev ES, Tolomeyev AP (2007) The vertical distribution of zooplankton in brackish meromictic lake with deep-water chlorophyll maximum. Hydrobiologia 576:69–82CrossRefGoogle Scholar
  52. Zadereev ES, Tolomeyev AP, Drobotov AV, Emeliyanova AY, Gubanov MV (2010) The vertical distribution and abundance of Gammarus lacustris in the pelagic zone of the meromictic lakes Shira and Shunet (Khakassia, Russia). Aquat Ecol 44:531–539CrossRefGoogle Scholar
  53. Zotina TA, Tolomeyev AP, Degermendzhy NN (1999) Lake Shira, a Siberian salt lake: ecosystem structure and function. 1. Major physico-chemical and biological features. Int J Salt Lake Res 8:211–232Google Scholar
  54. Zykov VV, Rogozin DY, Kalugin IA, Dar’in AV, Degermendzhi AG (2012) Carotenoids in bottom sediments of Lake Shira as a paleoindicator for reconstruction of lake states in Khakssiya, Russia. Contemp Probl Ecol 5:434–442CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Denis Rogozin
    • 1
    • 2
    Email author
  • Egor Zadereev
    • 1
    • 2
  • Igor Prokopkin
    • 1
  • Alexander Tolomeev
    • 1
  • Yuri Barkhatov
    • 1
  • Elena Khromechek
    • 1
  • Nadezhda Degermendzhi
    • 3
  • Anton Drobotov
    • 1
  • Andrei Degermendzhi
    • 1
  1. 1.Institute of Biophysics SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Krasnoyarsk State Medical UniversityKrasnoyarskRussia

Personalised recommendations