Advertisement

Biological and Ecological Features, Trophic Structure and Energy Flow in Meromictic Lakes

  • Egor S. ZadereevEmail author
  • Ramesh D. Gulati
  • Antonio Camacho
Chapter
  • 754 Downloads
Part of the Ecological Studies book series (ECOLSTUD, volume 228)

Abstract

Case studies and typical examples for meromictic lakes are used to provide a review of the biology and ecology of these ecosystems. Water column in meromictic lakes is not entirely mixed. These lakes are chemically and/or thermally stratified for several years and have several specific ecological features. The chemocline —the habitat created between the mixolimnion on top and monimolimnion below—is characterised by the existence of complex bacterial communities, autotrophic and heterotrophic protists and metazooplankton, commonly dominated by rotifers , high rates of oxygenic and anoxygenic photosynthesis and some biogeochemical processes . In these lakes, the sulphur, carbon and nitrogen cycles are partially coupled. However, a large number of bacterial and archaeal taxa, especially in anoxic waters, are still unidentified. An unaccomplished important task is to both investigate the uncultivated microbial diversity and access metabolic potential of the bacterial communities in meromictic lakes. The different components of the chemocline communities represent the ingredients of microbial loop that probably links the production of organic matter in anoxic waters with the classical grazer food web . However, in most of such lakes, the food web is not quite quantified. The classical grazer food web in meromictic lakes is often truncated, especially because fish and other predators are often absent. Meromixis has several effects on the grazer food web. First, the lack of mixing favours the loss of nutrients into the monimolimnion, which thus controls nutrient availability and the development of the phytoplankton . Because there is virtually no annual mixing in meromictic lakes, spring algal blooms can be less pronounced. The anoxic monimolimnion prevents zooplankton from vertical migrations that change the nature of food web interactions. The relatively large size of the monimolimnion and prevailing anoxic conditions adversely affect the biota. With the development of anoxic monimolimnion, the size of the photic and aerobic zones decreases, benthic community is altered and habitat for zooplankton and fish is reduced. The zooplankton community in meromictic lakes varies in the species composition and abundance. Depending on salinity and chemical composition of the mixolimnion, the zooplankton may include certain typical cladocerans and copepods . If the salinity increases, the zooplankton can shift to Artemia dominated community, typical of hypersaline lakes. Concluding, complex trophic links, coupling of nutrients cycles and anoxic and oxic food web components are peculiar features that make meromictic lakes natural laboratories to study the complexity of the food webs and biological interactions.

Keywords

Bacterial Community Microbial Loop Anoxic Water Purple Sulphur Bacterium Meromictic Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

EZ was partially supported by the Council on grants from the President of the Russian Federation for support of leading scientific schools (grant NSh-9249.2016.5).

References

  1. Andrei A-S, Robeson MS, Baricz A et al (2015) Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. ISME J 9:2642–2656. doi: 10.1038/ismej.2015.60 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baatar B, Chiang P-W, Rogozin DY et al (2016) Bacterial communities of three saline meromictic lakes in Central Asia. PLoS ONE 11:e0150847CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baricz A, Coman C, Andrei AS et al (2014) Spatial and temporal distribution of archaeal diversity in meromictic, hypersaline Ocnei Lake (Transylvanian Basin, Romania). Extremophiles 18:399–413CrossRefPubMedGoogle Scholar
  4. Biderre-Petit C, Jézéquel D, Dugat-Bony E et al (2011) Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 77:533–545CrossRefPubMedGoogle Scholar
  5. Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, DordrechtGoogle Scholar
  6. Boronat MD, Miracle MR (1997) Size distribution of Daphnia longispina in the vertical profile. Hydrobiologia 360:187–196CrossRefGoogle Scholar
  7. Bosshard PP, Santini Y, Gruter D et al (2000a) Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiol Ecol 31:173–182CrossRefPubMedGoogle Scholar
  8. Bosshard PP, Stettler R, Bachofen R (2000b) Seasonal and spatial community dynamics in the meromictic Lake Cadagno. Arch Microbiol 174:168–174CrossRefPubMedGoogle Scholar
  9. Bridgeman TB, Wallace CD, Carter GS et al (2000) A limnological survey of Third Sister Lake, MI with historical comparisons. Lake Reserv Manag 16:253–267CrossRefGoogle Scholar
  10. Camacho A (2006) On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25:453–478Google Scholar
  11. Camacho A (2009) Sulfur bacteria. In: Likens GE (ed) Encyclopedia of Inland waters, Elsevier—Academic Press, Oxford, NY, pp 261–278Google Scholar
  12. Camacho A, Vicente E (1998) Carbon photoassimilation by sharply stratified phototrophic communities at the chemocline of Lake Arcas (Spain). FEMS Microbiol Ecol 25:11–22CrossRefGoogle Scholar
  13. Camacho A, Garcia-Pichel F, Vicente E et al (1996) Adaptation to sulfide and to the underwater light field in three cyanobacterial isolates from Lake Arcas. FEMS Microbiol Ecol 21:293–301CrossRefGoogle Scholar
  14. Camacho A, Vicente E, Miracle MR (2000) Spatio-temporal distribution and growth dynamics of phototrophic sulphur bacteria populations in the sulphide-rich Lake. Arcas Aquat Sci 62:334–349CrossRefGoogle Scholar
  15. Camacho A, Erez J, Chicote A et al (2001a) Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the food web. Aquat Sci 63:91–106CrossRefGoogle Scholar
  16. Camacho A, Vicente E, Miracle MR (2001b) Ecology of Cryptomonas at the chemocline of a karstic sulphate-rich lake. Mar Freshw Res 52:805–815CrossRefGoogle Scholar
  17. Camacho A, Vicente E, García-Gil LJ et al (2002) Factors determining changes in the abundance and distribution of nano- and picoplanktonic phototrophs in Lake El Tobar (Central Spain). Verh Int Ver Limnol 28:613–619Google Scholar
  18. Camacho A, Picazo A, Miracle MR et al (2003a) Spatial distribution and temporal dynamics of picocyanobacteria in a meromictic karstic lake. Algol Stud 109:171–184CrossRefGoogle Scholar
  19. Camacho A, Miracle MR, Vicente E (2003b) Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Arch Hydrobiol 157:321–338CrossRefGoogle Scholar
  20. Camacho A, Walter XA, Picazo A et al (2016) Photoferrotrophy: modern remains of an ancient photosynthesis. Front Microbiol (in press)Google Scholar
  21. Casamayor EO, Schafer H, Baneras L et al (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulphurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508CrossRefPubMedPubMedCentralGoogle Scholar
  22. Casamayor EO, Llirós M, Picazo A et al (2012) Contribution of deep dark fixation processes to overall CO2 incorporation and large vertical changes of microbial populations in stratified karstic lakes. Aquat Sci 74:61–75CrossRefGoogle Scholar
  23. Cohen Y, Krumbein WE, Shilo M (1977) Solar Lake (Sinai). Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22:609–620CrossRefGoogle Scholar
  24. Comeau AM, Harding T, Galand PE et al (2012) Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters. Sci Rep 2:604. doi: 10.1038/srep00604 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S et al (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78. doi: 10.1111/j.1472-4669.2010.00257.x CrossRefPubMedGoogle Scholar
  26. Degermendzhy AG, Belolipetsky VM, Zotina TA, Gulati RD (2002) Formation of the vertical heterogeneity in the Lake Shira ecosystem: the biological mechanisms and mathematical model. Aquat Ecol 36:271–297CrossRefGoogle Scholar
  27. Degermendzhy AG, Zadereev YS, Rogozin DY et al (2010) Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia). Aquat Ecol 44:619–632CrossRefGoogle Scholar
  28. DeMeester L, Vyverman W (1997) Diurnal residence of the larger stages of the calanoid copepod Acartia tonsa in the anoxic monimolimnion of a tropical meromictic lake in New Guinea. J Plankton Res 19:425–434CrossRefGoogle Scholar
  29. Dietz S, Lessmann D, Boehrer B (2012) Contribution of solutes to density stratification in a meromictic lake (Waldsee/Germany). Mine Water Environ 31:129–137CrossRefGoogle Scholar
  30. Dressler M, Huebener T, Goers S et al (2007) Multi-proxy reconstruction of trophic state, hypolimnetic anoxia and phototrophic sulphur bacteria abundance in a dimictic lake in northern Germany over the past 80 years. J Paleolimnol 37:205–219CrossRefGoogle Scholar
  31. Fenchel T, Bernard C (1993) Endosymbiotic purple non-sulphur bacteria in an anaerobic ciliated protozoon. Microbiol Lett 110:21–25CrossRefGoogle Scholar
  32. Finlay BJ, Clarke KJ, Vicente E et al (1991) Anaerobic ciliates from a sulphide rich solution lake in Spain. Eur J Protistol 27:148–159CrossRefPubMedGoogle Scholar
  33. Fry B (1986) Sources of carbon and sulphur nutrition for consumers in three meromictic lakes of New York State. Limnol Oceanogr 31:79–88CrossRefPubMedGoogle Scholar
  34. García-Gil LJ, Vicente E, Camacho A et al (1999) Vertical distribution of photosynthetic sulphur bacteria linked to saline gradients in Lake El Tobar (Cuenca, Spain). Aquat Microb Ecol 20:299–303CrossRefGoogle Scholar
  35. Gasol JM, Jurgens K, Massana R et al (1995) Mass development of Daphnia pulex in a sulphide-rich pond (Lake Ciso). Arch Hydrobiol 132:279–296Google Scholar
  36. Gervais F (1997) Light-dependent growth, dark survival, and glucose uptake by cryptophytes isolated from a freshwater chemocline. J Phycol 33:18–25CrossRefGoogle Scholar
  37. Gervais F (1998) Ecology of cryptophytes coexisting near a freshwater chemocline. Freshw Biol 39:61–78CrossRefGoogle Scholar
  38. Gies EA, Konwar KM, Beatty JT, Hallam SJ (2014) Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl Environ Microbiol 80:6807–6818CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gophen M (1977) Feeding of Daphnia on Chlamydomonas and Chlorobium. Nature 5:271–273CrossRefGoogle Scholar
  40. Halm H, Musat N, Lam P et al (2009) Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environ Microbiol 11:1945–1958CrossRefPubMedGoogle Scholar
  41. Hollibaugh JT, Wong PS, Bano N et al (2001) Stratification of microbial assemblages in Mono Lake, California, and response to a mixing event. Hydrobiologia 1:45–60CrossRefGoogle Scholar
  42. Hrdinka T, Sobr M, Fott J, Nedbalova L (2013) The unique environment of the most acidified permanently meromictic lake in the Czech Republic. Limnologica 43:417–426CrossRefGoogle Scholar
  43. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042CrossRefPubMedPubMedCentralGoogle Scholar
  44. Inceoglu O, Lliros M, Crowe Sean A et al (2015) Vertical distribution of functional potential and active microbial communities in meromictic Lake Kivu. Microb Ecol 70:596–611CrossRefPubMedGoogle Scholar
  45. Judd KE, Adams HE, Bosch NS et al (2005) A case history: Effects of mixing regime on nutrient dynamics and community structure in Third Sister Lake, Michigan during late winter and early spring 2003. Lake Reserv Manag 21:316–329CrossRefGoogle Scholar
  46. Kizito YS, Nauwerck A (1995) Temporal and vertical distribution of planktonic rotifers in a meromictic crater lake, Lake Nyahirya (Western Uganda). Hydrobiologia 313:303–312CrossRefGoogle Scholar
  47. Klepac-Ceraj V, Hayes CA, Gilhooly WP et al (2012) Microbial diversity under extreme euxinia: Mahoney Lake, Canada. Geobiology 10:223–235CrossRefPubMedGoogle Scholar
  48. Lauro FM, DeMaere MZ, Yau S et al (2010) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895CrossRefPubMedPubMedCentralGoogle Scholar
  49. Laybourn-Parry J, Bell E (2014) Ace Lake: three decades of research on a meromictic, Antarctic lake. Polar Biol 37:1685–1699CrossRefGoogle Scholar
  50. Lehours AC, Bardot C, Thenot A, Debroas D, Fonty G (2005) Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France. Appl Environ Microbiol 71:7389–7400. doi: 10.1125/AEM.71.11.7389-7400.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lehours A-C, Evans P, Bardot C et al (2007) Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019CrossRefPubMedPubMedCentralGoogle Scholar
  52. Llirós M, García–Armisen T, Darchambeau F et al (2015) Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci Rep. doi: 10.1038/srep13803 PubMedPubMedCentralGoogle Scholar
  53. Massana R, Gasol JM, Jürgens K, Pedrós-Alió C (1994) Impact of Daphnia pulex on a metalimnetic microbial community. J Plankton Res 16:1379–1399CrossRefGoogle Scholar
  54. McNaughton KA, Lee PF (2010) Water quality effects from an aquaculture operation in a meromictic Iron Pit Lake in Northwestern Ontario, Canada. Water Qual Res J Can 45:13–24Google Scholar
  55. Miracle MR, Vicente E, Pedrós-Alió C (1992) Biological studies of Spanish meromictic and stratified karstic lakes. Limnetica 8:59–77Google Scholar
  56. Murtaugh PA (1985) Vertical distributions of zooplankton and population dynamics of Daphnia in a meromictic lake. Hydrobiologia 123:47–57CrossRefGoogle Scholar
  57. Musat N, Halm H, Winterholler B et al (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. PNAS 105:17861–17866CrossRefPubMedPubMedCentralGoogle Scholar
  58. Noguerola I, Picazo A, Llirós M et al (2015) Diversity of freshwater Epsilonproteobacteria and dark inorganic carbon fixation in the sulphidic redoxcline of a meromictic karstic lake. FEMS Microbiol Ecol. doi: 10.1093/femsec/fiv086 PubMedGoogle Scholar
  59. Northcote TG, Hall KJ (2010) Salinity regulation of zooplanktonic abundance and vertical distribution in two saline meromictic lakes in South Central British Columbia. Hydrobiologia 638:121–136CrossRefGoogle Scholar
  60. Oikonomou A, Filker S, Breiner H-W, Stoeck T (2015) Protistan diversity in a permanently stratified meromictic lake (Lake Alatsee, SW Germany). Environ Microbiol 17:2144–2157CrossRefPubMedGoogle Scholar
  61. Overmann J (1997) Mahoney Lake: a case study of the ecological significance of phototrophic sulphur bacteria. In: Jones JG (ed) Advances in microbial ecology, vol 15. Springer Science+Business Media, New York, pp 251–288CrossRefGoogle Scholar
  62. Overmann J (2008) Ecology of phototrophic sulfur bacteria. In: Hell R, Dahl C, Knaff D et al (eds) Sulfur metabolism in phototrophic organisms. Advances in photosynthesis and respiration, vol 27. Springer, Heidelberg, pp 375–396Google Scholar
  63. Overmann J, van Gemerden H (2000) Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24:591–599CrossRefPubMedGoogle Scholar
  64. Overmann J, Beatty JT, Hall KJ et al (1991) Characterization of a dense, purple sulphur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36:846–859CrossRefGoogle Scholar
  65. Overmann J, Beatty T, Hall K (1994) Photosynthetic activity and population dynamics of Amoebobacter purpurea in a meromictic saline lake. FEMS Microbiol Ecol 15:309–320CrossRefGoogle Scholar
  66. Overmann J, Coolen MJL, Tuschak C (1999a) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172:83–94CrossRefPubMedGoogle Scholar
  67. Overmann J, Hall KJ, Northcote TG, Beatty JT (1999b) Grazing of the copepod Diaptomus connexus on purple sulphur bacteria in a meromictic salt lake. Environ Microbiol 1:213–221CrossRefPubMedGoogle Scholar
  68. Overmann J, Hall KJ, Northcote TG et al (1999c) Structure of the aerobic food chain in a meromictic lake dominated by purple sulphur bacteria. Arch Hydrobiol 144:127–156CrossRefGoogle Scholar
  69. Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373PubMedPubMedCentralGoogle Scholar
  70. Peduzzi S, Welsh A, Demarta A et al (2011) Thiocystis chemoclinalis sp. nov. and Thiocystis cadagnonensis sp. nov., motile purple sulphur bacteria isolated from the chemocline of a meromictic lake. Int J Syst Evol Microbiol 61:1682–1687CrossRefPubMedGoogle Scholar
  71. Peduzzi S, Storelli N, Welsh A et al (2012) Candidatus “Thiodictyon syntrophicum”, sp. nov., a new purple sulphur bacterium isolated from the chemocline of Lake Cadagno forming aggregates and specific associations with Desulfocapsa sp. Syst Appl Microbiol 35:139–144CrossRefPubMedGoogle Scholar
  72. Peura S, Eiler A, Bertilsson S et al (2012) Distinct and diverse anaerobic bacterial communities in boreal lakes dominated by candidate division OD1. ISME J 6:1640–1652CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pjevac P, Korlević M, Berg JS et al (2015) Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake. Appl Environ Microbiol 81:298–308CrossRefPubMedGoogle Scholar
  74. Rodrigo MA (1997) Limnología comparada de las lagunas de dos sistemas cársticos de Cuenca: Bacterias fotosintéticas de la Laguna de La Cruz y la Laguna de Arcas-2. PhD Dissertation, Universitat de ValènciaGoogle Scholar
  75. Rodrigo MA, Vicente E, Miracle MR (2000) The role of light and concentration gradients in the vertical stratification and seasonal development of phototrophic bacteria in a meromictic lake. Arch Hydrobiol 148:533–548CrossRefGoogle Scholar
  76. Rogozin DY, Zykov VV, Chernetsky MY et al (2009) Effect of winter conditions on distributions of anoxic phototrophic bacteria in two meromictic lakes in Siberia, Russia. Aquat Ecol 43:661–672CrossRefGoogle Scholar
  77. Rogozin DY, Zykov VV, Degermendzhi AG (2012) Ecology of purple sulfur bacteria in the highly stratified meromictic Lake Shunet (Siberia, Khakassia) in 2002–2009. Microbiology 81:727–735CrossRefGoogle Scholar
  78. Rudyakov YA (1986) Dynamic of the vertical distribution of pelagic animals. Nauka, MoscowGoogle Scholar
  79. Sharples J, Moore CM, Rippeth TP et al (2001) Phytoplankton distribution and survival in the thermocline. Limnol Oceanogr 46:486–496CrossRefGoogle Scholar
  80. Snoeks J (2000) How well known is the ichthyodiversity of the large East African lakes? Adv Ecol Res 31:17–38CrossRefGoogle Scholar
  81. Strelkov P, Shunatova N, Fokin M et al (2014) Marine Lake Mogilnoe (Kildin Island, the Barents Sea): one hundred years of solitude. Polar Biol 37:297–310CrossRefGoogle Scholar
  82. Temerova TA, Tolomeyev AP, Degermendzhy AG (2002) Growth of dominant zooplankton species feeding on plankton microflora in Lake Shira. Aquat Ecol 36:235–243CrossRefGoogle Scholar
  83. Tiodjio RE, Sakatoku A, Nakamura A et al (2014) Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa). Sci Rep 4:6151. doi:10.1038/srep06151. pmid:25141868Google Scholar
  84. Tonolla M, Del Don C, Boscolo P et al (1988) The problem of fish management in an artificially regulated meromictic lake: lake Cadagno (Canton Tessin, Switzerland). Riv Ital Acquacolt 23:57–68Google Scholar
  85. Tonolla M, Demarta A, Peduzzi R et al (1999) In situ analysis of phototrophic sulphur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 65:1325–1330PubMedPubMedCentralGoogle Scholar
  86. Tonolla M, Peduzzi S, Hahn D et al (2003) Spatio-temporal distribution of phototrophic sulphur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). FEMS Microbiol Ecol 43:89–98CrossRefPubMedGoogle Scholar
  87. Tonolla M, Peduzzi R, Hahn D (2005) Long-term population dynamics of phototrophic sulphur bacteria in the chemocline of Lake Cadagno, Switzerland. Appl Environ Microbiol 71:3544–3550CrossRefPubMedPubMedCentralGoogle Scholar
  88. Van Gemerden H, Mas J (1995) Ecology of phototrophic sulphur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 49–85Google Scholar
  89. Verburg P, Bills IR (2007) Two new sympatric species of Neolamprologus (Teleostei: Cichlidae) from Lake Tanganyika, East Africa. Zootaxa 1612:25–44Google Scholar
  90. Verschuren D, Cocquyt C, Tibby J et al (1999) Long-term dynamics of algal and invertebrate communities in a small, fluctuating tropical soda lake. Limnol Oceanogr 44:1216–1231CrossRefGoogle Scholar
  91. Walter XA (2011) Anaerobic iron cycling in a neoarchean ocean analogue. Dissertation, Université de NeuchâtelGoogle Scholar
  92. Walter X, Picazo A, Miracle MR et al (2014) Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake. Front Microbiol 5:713. doi: 10.3389/fmicb.2014.00713 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wilk-Wozniak E, Zurek R (2006) Phytoplankton and its relationships with chemical parameters and zooplankton in meromictic Piaseczno reservoir, Southern Poland. Aquat Ecol 40:165–176CrossRefGoogle Scholar
  94. Yarza P, Yilmaz P, Pruesse E et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645CrossRefPubMedGoogle Scholar
  95. Yurkova N, Rathgeber C, Swiderski J et al (2002) Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol 40:191–204CrossRefPubMedGoogle Scholar
  96. Zadereev YS, Tolomeyev AP (2007) The vertical distribution of zooplankton in brackish meromictic lake with deep-water chlorophyll maximum. Hydrobiologia 576:69–82CrossRefGoogle Scholar
  97. Zhivotovsky LA, Teterina AA, Mukhina NV et al (2016) Effects of genetic drift in a small population of Atlantic cod (Gadus morhua kildinensis Derjugin) landlocked in a meromictic lake: genetic variation and conservation measures. Conserv Genet 17:229–238CrossRefGoogle Scholar
  98. Zurek R (2006) Zooplankton of a flooded opencast sulphur mine. Aquat Ecol 40:177–202CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Egor S. Zadereev
    • 1
    Email author
  • Ramesh D. Gulati
    • 2
  • Antonio Camacho
    • 3
  1. 1.Institute of Biophysics SB RASKrasnoyarskRussia
  2. 2.Netherlands Institute of Ecology (NIOO)WageningenThe Netherlands
  3. 3.Cavanilles Institute for Biodiversity and Evolutionary Biology & Department of Microbiology and EcologyUniversitat de ValenciaBurjassot, ValenciaSpain

Personalised recommendations