Theoretical Insights in ECL

  • Alexander Oleinick
  • Oleksiy V. Klymenko
  • Irina SvirEmail author
  • Christian AmatoreEmail author


ECL reaction mechanisms involved in all experimental approaches are characterized by a sequence of very fast second-order reactions taking place in the diffusion layer between transient species that, according to the exact process of ECL generation, may be generated at a single electrode, a pair of electrodes (anode-cathode), or through electron transfers between activated reactants and co-reactants. These extremely fast second-order reactions generate the extremely short-lived electronically excited state species, S*, which are deactivated through a rapid first-order emissive decay giving rise to the emission of light. These crucial species are therefore always generated and consumed within a narrow layer of solution of very small size compared to diffusion layers. Moreover, they are present within this layer at vanishingly small concentrations. This creates kinetic situations termed “reaction fronts” exact numerical treatment of which is almost impossible by classical numerical approaches. This chapter presents a series of numerical approaches based on the concepts developed by the authors to circumvent these severe complications and allow a precise and fast simulation of ECL reaction mechanisms. These are illustrated taking advantage of experimental examples featuring each main method of ECL generation.


Electrode Surface Natural Convection Diffusion Layer Reaction Front Stagnant Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by CNRS UMR8640 PASTEUR (CNRS, ENS and UPMC) and the French Ministry of Research and Higher Education as well as by ANR Chaires d’excellence (CHEX) 2010, ANR-10-CHEX-0012, MicroNanoChem.


  1. 1.
    Santhanam, K.S.V., Bard, A.J.: J. Am. Chem. Soc. 87, 139–140 (1965)CrossRefGoogle Scholar
  2. 2.
    Feldberg, S.W.: J. Am. Chem. Soc. 88, 390–393 (1966)CrossRefGoogle Scholar
  3. 3.
    Faulkner, L.R., Bard, A.J..: Techniques of electrogenerated chemiluminescence in electroanalytical chemistry. In: Bard, A.J. (eds.), vol. 10, pp. 1–95. Marcel Dekker, New York (1977)Google Scholar
  4. 4.
    Amatore, C.: Electrochemistry at ultramicroelectrodes in physical electrochemistry: principles, methods and applications. In: Rubinstein, I. (ed.), chap. 4, pp. 131–208. Marcel Dekker, New York (1995)Google Scholar
  5. 5.
    Bartelt, J.E., Drew, S.M., Wightman, R.M.: J. Electrochem. Soc. 139, 70–74 (1992)CrossRefGoogle Scholar
  6. 6.
    Amatore, C., Fosset, B., Maness, K.M., Wightman, R.M.: Anal. Chem. 65, 2311–2316 (1993)CrossRefGoogle Scholar
  7. 7.
    Collinson, M.M., Pastore, P., Maness, K.M., Wightman, R.M.: J. Am. Chem. Soc. 116, 4095–4096 (1994)CrossRefGoogle Scholar
  8. 8.
    Pastore, P., Magno, F., Collinson, M.M., Wightman, R.M.: J. Electroanal. Chem. 397, 19–26 (1995)CrossRefGoogle Scholar
  9. 9.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons, New York (2002)Google Scholar
  10. 10.
    Miao, W.: Chem. Rev. 108, 2506–2553 (2008)CrossRefGoogle Scholar
  11. 11.
    Yin, X.-B., Dong, S., Wang, E.: TrAC-Trend Anal. Chem. 23, 432–441 (2004)CrossRefGoogle Scholar
  12. 12.
    Pyati, R., Richter, M.M.: Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 103, 12–78 (2007)Google Scholar
  13. 13.
    Liu, Z., Qi, W., Xu, G.: Chem. Soc. Rev. 44, 3117–3142 (2015)CrossRefGoogle Scholar
  14. 14.
    Amatore, C., Klymenko, O.V., Svir, I.: Electrochem. Commun. 12, 1170–1173 (2010)CrossRefGoogle Scholar
  15. 15.
    Amatore, C., Klymenko, O.V., Svir, I.: Electrochem. Commun. 12, 1165–1169 (2010)CrossRefGoogle Scholar
  16. 16.
    Klymenko, O.V., Oleinick, A., Svir, I., Amatore, C.: Rus. J. Electrochem. 48, 593–599 (2012)CrossRefGoogle Scholar
  17. 17.
    Klymenko, O.V., Svir, I., Oleinick, A., Amatore, C.: ChemPhysChem 13, 845–859 (2012)CrossRefGoogle Scholar
  18. 18.
    Amatore, C., Klymenko, O.V., Svir, I.: Electrochim. Acta 56, 4422–4423 (2011)CrossRefGoogle Scholar
  19. 19.
    Klymenko, O.V., Svir, I., Amatore, C.: Electrochem. Commun. 12, 1378–1382 (2010)CrossRefGoogle Scholar
  20. 20.
    Amatore, C., Klymenko, O.V., Svir, I.: Anal. Chem. 84, 2792–2798 (2012)CrossRefGoogle Scholar
  21. 21.
    Klymenko, O.V., Svir, I., Amatore, C.: ChemPhysChem 14, 2237–2250 (2013)CrossRefGoogle Scholar
  22. 22.
    Svir, I., Oleinick, A., Klymenko, O.V., Amatore, C.: ChemElectroChem 2, 811–818 (2015)CrossRefGoogle Scholar
  23. 23.
    Amatore, C., Pébay, C., Servant, L., Sojic, N., Szunerits, S., Thouin, L.: ChemPhysChem 7, 1322–1327 (2006)CrossRefGoogle Scholar
  24. 24.
    Amatore, C., Oleinick, A., Klymenko, O.V., Thouin, L., Servant, L., Svir, I.: ChemPhysChem 8, 1664–1676 (2007)CrossRefGoogle Scholar
  25. 25.
    Rudolph, M., Reddy, D.P., Feldberg, S.W.: Anal. Chem. 66, 589A (1994)CrossRefGoogle Scholar
  26. 26.
    Ketter, J.B., Forry, S.P., Wightman, R.M., Feldberg, S.W.: Electrochem. Solid. St. 7, E18–E22 (2004)CrossRefGoogle Scholar
  27. 27.
    Comsol Multiphysics, COMSOL, Inc., Burlington, MAGoogle Scholar
  28. 28.
    Cutress, I.J., Dickinson, E.J.F., Compton, R.G.: J. Electroanal. Chem. 638, 76–83 (2010)CrossRefGoogle Scholar
  29. 29.
    Dickinson, E.J.F., Ekström, H., Fontes, E.: Electrochem. Commun. 40, 71–74 (2014)CrossRefGoogle Scholar
  30. 30.
    Sartin, M.M., Shu, C., Bard, A.J.: J. Am. Chem. Soc. 130, 5354–5360 (2008)CrossRefGoogle Scholar
  31. 31.
    Svir, I.B., Oleinick, A.I., Klimenko, A.V.: J. Electroanal. Chem. 513, 19–125 (2001)CrossRefGoogle Scholar
  32. 32.
    Svir, I.B., Oleinick, A.I.: J. Electroanal. Chem. 499, 30–38 (2001)CrossRefGoogle Scholar
  33. 33.
    Kukoba, A.V., Bykh, A.I., Svir, I.B.: Fresenius’ J. of Anal. Chem. 368, 439–442 (2000)Google Scholar
  34. 34.
    Svir, I.B., Klimenko, A.V., Compton, R.G.: Radiotekhnika 118, 92–101 (2001)Google Scholar
  35. 35.
    Amatore, C., Szunerits, S., Thouin, L., Warkocz, J.-S.: J. Electroanal. Chem. 500, 62–70 (2001)CrossRefGoogle Scholar
  36. 36.
    Amatore, C., Szunerits, S., Thouin, L., Warkocz, J.S.: Electroanalysis 13, 646–652 (2001)CrossRefGoogle Scholar
  37. 37.
    Amatore, C., Pebay, C., Scialdone, O., Szunerits, S., Thouin, L.: Chem. Eur. J. 7, 2933–2939 (2001)CrossRefGoogle Scholar
  38. 38.
    Baltes, N., Thouin, L., Amatore, C., Heinze, J.: Angew. Chem. Int. Ed. 43, 1431–1435 (2004)CrossRefGoogle Scholar
  39. 39.
    Amatore, C., Knobloch, K., Thouin, L.: J. Electroanal. Chem. 601, 17–28 (2007)CrossRefGoogle Scholar
  40. 40.
    Klymenko, O.V., Svir, I., Amatore, C.: J. Electroanal. Chem. 688, 320–327 (2013)CrossRefGoogle Scholar
  41. 41.
    Klymenko, O.V., Svir, I., Amatore, C.: Mol. Phys. 112, 1273–1283 (2014)CrossRefGoogle Scholar
  42. 42.
    Oleinick, A., Amatore, C., Svir, I.: Electrochem. Commun. 6, 588–594 (2004)CrossRefGoogle Scholar
  43. 43.
    Amatore, C., Oleinick, A.I., Svir, I.: J. Electroanal. Chem. 597, 69–76 (2006)CrossRefGoogle Scholar
  44. 44.
    Amatore, C., Oleinick, A., Svir, I.: J. Electroanal. Chem. 564, 245–260 (2004)CrossRefGoogle Scholar
  45. 45.
    Amatore, C., Oleinick, A., Klymenko, O.V., Delacôte, C., Walcarius, A., Svir, I.: Anal. Chem. 80, 3229–3243 (2008)CrossRefGoogle Scholar
  46. 46.
    Amatore, C., Oleinick, A., Svir, I.: Electrochem. Commun. 6, 1123–1130 (2004)CrossRefGoogle Scholar
  47. 47.
    Amatore, C., Oleinick, A.I., Svir, I.B.: J. Electroanal. Chem. 553, 49–61 (2003)CrossRefGoogle Scholar
  48. 48.
    Amatore, C., Oleinick, A., Svir, I.: J. Electroanal. Chem. 575, 103–123 (2005)CrossRefGoogle Scholar
  49. 49.
    Amatore, C., Oleinick, A., Svir, I.: Electrochem. Commun. 5, 989–994 (2003)CrossRefGoogle Scholar
  50. 50.
    Amatore, C., Oleinick, A.I., Svir, I.: J. Electroanal. Chem. 597, 77–85 (2006)CrossRefGoogle Scholar
  51. 51.
    Amatore, C., Oleinick, A.I., Svir, I.: Anal. Chem. 81, 4397–4405 (2009)CrossRefGoogle Scholar
  52. 52.
    Fosset, B., Amatore, C.A., Bartelt, J.E., Michael, A.C., Wightman, R.M.: Anal. Chem. 63, 306–314 (1991)CrossRefGoogle Scholar
  53. 53.
    Amatore, C., Oleinick, A.I., Svir, I.: ChemPhysChem 11, 149–158 (2010)CrossRefGoogle Scholar
  54. 54.
    Amatore, C., Oleinick, A.I., Svir, I.: ChemPhysChem 11, 159–174 (2010)CrossRefGoogle Scholar
  55. 55.
    Amatore, C., Savéant, J.-M.: J. Electroanal. Chem. 85, 27–46 (1977)CrossRefGoogle Scholar
  56. 56.
    Amatore, C.: Principles and methods. Basic concepts in organic electrochemistry. In: Baizer, M., Lund, H. (eds.), chap. 2, pp. 11–119. M. Dekker, New York (1991)Google Scholar
  57. 57.
    Amatore, C.: Organic electrochemistry, fifth edition: revised and expanded. In: Hammerich, O., Speiser, B. (eds.), chap. 1, pp. 3–96; chap. 10, pp. 371–394. CRC Press, Taylor & Francis Group, Boca Raton (2016)Google Scholar
  58. 58.
    Michael, P.R., Faulkner, L.R.: J. Am. Chem. Soc. 99, 7754–7761 (1977)CrossRefGoogle Scholar
  59. 59.
    Elangovan, A., Kao, K.-M., Yang, S.-W., Chen, Y.-L., Ho, T.-I., Su, Y.O.: J. Org. Chem. 70, 4460–4469 (2005)CrossRefGoogle Scholar
  60. 60.
    Miao, W., Choi, J.-P., Bard, A.J.: J. Am. Chem. Soc. 124, 14478–14485 (2002)CrossRefGoogle Scholar
  61. 61.
    Mariano, P.S., Stavinoha, J., Bay, E.: Tetrahedron 37, 3385–3393 (1981)CrossRefGoogle Scholar
  62. 62.
    Andrieux, C.P., Savéant, J.M.: J. Electroanal. Chem. 26, 223–235 (1970)CrossRefGoogle Scholar
  63. 63.
    Ames, J.R., Brandange, S., Rodriguez, B., Castagnoli Jr., N., Ryan, M.D., Kovacic, P.: Biorg. Chem. 14, 228–241 (1986)CrossRefGoogle Scholar
  64. 64.
    Zheng, H., Zu, Y.: J. Phys. Chem. B 109, 12049–12053 (2005)CrossRefGoogle Scholar
  65. 65.
    Scott, A.M., Pyati, R.: J. Phys. Chem. B 105, 9011–9015 (2001)CrossRefGoogle Scholar
  66. 66.
    Zheng, L., Chi, Y., Dong, Y., Zhang, L., Chen, G.: J. Phys. Chem. C 112, 15570–15575 (2008)CrossRefGoogle Scholar
  67. 67.
    Adcock, J.L., Barrow, C.J., Barnett, N.W., Conlan, X.A., Hogan, C.F., Francisa, P.S.: Drug Test. Analysis 3, 145–160 (2011)Google Scholar
  68. 68.
    Yuan, L., Zhou, L., Li, J., Shi, L., Chen, L., Huang, C., Yanac, Z., Cai, Q.: Anal. Methods 5, 3626–3630 (2013)CrossRefGoogle Scholar
  69. 69.
    Joshi, T., Barbante, G.J., Francis, P.S., Hogan, C.F., Bond, A.M., Gasser, G., Spiccia, L.: Inorg. Chem. 51, 3302–3315 (2012)CrossRefGoogle Scholar
  70. 70.
    Xu, X.H.N., Jeffers, R.B., Gao, J., Logan, B.: Analyst 126, 1285–1292 (2001)CrossRefGoogle Scholar
  71. 71.
    Bergmann, F, Cysewski, R., De Cola, L., Dziadek, S., Fernandez Hernandez, J.M., Josel, H., Seidel, C.: Patents Numbers (ROCHE DIAGNOSTICS GMBH): WO2014019709-A2; WO2014019709-A3; WO2014019707-A2; WO2014019707-A3; WO2014019711-A1; WO2014019708-A1Google Scholar
  72. 72.
    DeCola, L.: P. Abstract of ECL meeting 2014. Bertinorro (Italy)Google Scholar
  73. 73.
    Zanarini, S., Rampazzo, E., Della Ciana, L., Marcaccio, M., Marzocchi, E., Montalti, M., Paolucci, F., Prodi, L.: J. Am. Chem. Soc. 131, 2260–2267 (2009)CrossRefGoogle Scholar
  74. 74.
    Zeng, Q., McNally, A., Keyes, T.E., Forster, R.J.: Electrochem. Commun. 10, 466–470 (2008)CrossRefGoogle Scholar
  75. 75.
    Devadoss, A., Spehar-Délèze, A.M., Tanner, D.A., Bertoncello, P., Marthi, R., Keyes, T.E., Forster, R.J.: Langmuir 26, 2130–2135 (2010)CrossRefGoogle Scholar
  76. 76.
    Brennan, J.L., Keyes, T.E., Forster, R.J.: J. Electroanal. Chem. 662, 30–35 (2011)CrossRefGoogle Scholar
  77. 77.
    Edwards, D.A.: J. Phys. Chem. C 117, 6747–6751 (2013)CrossRefGoogle Scholar
  78. 78.
    Amatore, C., Bonhomme, F., Bruneel, J.L., Servant, L., Thouin, L.: Electrochem. Commun. 2, 235–239 (2000)CrossRefGoogle Scholar
  79. 79.
    Amatore, C., Bonhomme, F., Bruneel, J.L., Servant, L., Thouin, L.: J. Electroanal. Chem. 484, 1–17 (2000)CrossRefGoogle Scholar
  80. 80.
    Svir, I.B., Oleinick, A.I., Compton, R.G.: J. Electroanal. Chem. 560, 117–126 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departement de Chimie, CNRS UMR 8640 PASTEUREcole Normale Superieure-PSL Research University, Sorbonne Universites-UPMC Paris 6, CNRSParisFrance
  2. 2.Department of Chemical and Process EngineeringUniversity of SurreyGuildfordUK

Personalised recommendations