Advertisement

Efficient Search of Relevant Structures in Complex Systems

  • Laura Sani
  • Michele AmorettiEmail author
  • Emilio Vicari
  • Monica Mordonini
  • Riccardo Pecori
  • Andrea Roli
  • Marco Villani
  • Stefano Cagnoni
  • Roberto Serra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)

Abstract

In a previous work, Villani et al. introduced a method to identify candidate emergent dynamical structures in complex systems. Such a method detects subsets (clusters) of the system elements which behave in a coherent and coordinated way while loosely interacting with the remainder of the system. Such clusters are assessed in terms of an index that can be associated to each subset, called Dynamical Cluster Index (DCI). When large systems are analyzed, the “curse of dimensionality” makes it impossible to compute the DCI for every possible cluster, even using massively parallel hardware such as GPUs.

In this paper, we propose an efficient metaheuristic for searching relevant dynamical structures, which hybridizes an evolutionary algorithm with local search and obtains results comparable to an exhaustive search in a much shorter time. The effectiveness of the method we propose has been evaluated on a set of Boolean models of real-world systems.

Keywords

Complex systems Hybrid metaheuristics Local search 

Notes

Acknowledgments

The authors thank the UE project “MD – Emergence by Design”, Pr.ref. 284625 7th FWP-FET program for providing the data, which where in turn kindly provided by the Green Community project, sponsored by the National Association for Municipalities and Mountain Communities (UNCEM).

References

  1. 1.
    Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Villani, M., Filisetti, A., Benedettini, S., Roli, A., Lane, D., Serra, R.: The detection of intermediate-level emergent structures and patterns. In: Miglino, O., et al. (eds.) Advances in Artificial Life, ECAL 2013, pp. 372–378. The MIT Press, Cambridge (2013)CrossRefGoogle Scholar
  3. 3.
    Gershenson, C., Fernandez, N.: Complexity and information: measuring emergence, self-organization, and homeostasis at multiple scales. Complex 18(2), 29–44 (2012)CrossRefGoogle Scholar
  4. 4.
    Amoretti, M., Gershenson, C.: Measuring the complexity of adaptive peer-to-peer systems. Peer-to-Peer Netw. Appl. 9(6), 1031–1046 (2016)Google Scholar
  5. 5.
    Febres, G., Jaff, K.: Calculating entropy at different scales among diverse communication systems. Complexity 21(S1), 330–353 (2016)CrossRefGoogle Scholar
  6. 6.
    Marull, J., Font, C., Padr, R., Tello, E., Panazzolo, A.: Energy landscape integrated analysis: a proposal for measuring complexity in internal agroecosystem processes (barcelona metropolitan region, 18602000). Ecol. Indic. 66, 30–46 (2016)CrossRefGoogle Scholar
  7. 7.
    Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Serra, R.: Exploring the organisation of complex systems through the dynamical interactions among their relevant subsets. In: Andrews, P. et al., (eds.) Proceedings of the European Conference on Artificial Life 2015, ECAL 2015, pp. 286–293. The MIT Press (2015)Google Scholar
  8. 8.
    Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21(4), 412–431 (2015)CrossRefGoogle Scholar
  9. 9.
    Tononi, G., McIntosh, A., Russel, D., Edelman, G.: Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149 (1998)CrossRefGoogle Scholar
  10. 10.
    Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91(11), 5033–5037 (1994)CrossRefGoogle Scholar
  11. 11.
    Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Poli, I., Serra, R.: On some properties of information theoretical measures for the study of complex systems. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 140–150. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)CrossRefGoogle Scholar
  13. 13.
    Hu, X.M., Zhang, J., Yu, Y., Chung, H.S.H., Li, Y.L., Shi, Y.H., Luo, X.N.: Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Trans. Evol. Comput. 14(5), 766–781 (2010)CrossRefGoogle Scholar
  14. 14.
    Behbahani, S., de Silva, C.W.: Niching genetic scheme with bond graphs for topology and parameter optimization of a mechatronic system. IEEE/ASME Trans. Mechatron. 19(1), 269–277 (2014)CrossRefGoogle Scholar
  15. 15.
    Chang, D., Zhao, Y., Zheng, C.: A real-valued quantum genetic niching clustering algorithm and its application to color image segmentation. In: International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), pp. 144–147, December 2011Google Scholar
  16. 16.
    Pereira, M.W., Neto, G.S., Roisenberg, M.: A topological niching covariance matrix adaptation for multimodal optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2562–2569, July 2014Google Scholar
  17. 17.
    Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, pp. 41–49. L. Erlbaum Associates Inc., Hillsdale (1987)Google Scholar
  18. 18.
    Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function optimization. Evol. Comput. 1(2), 101–125 (1993)CrossRefGoogle Scholar
  19. 19.
    Manner, R., Mahfoud, S., Mahfoud, S.W.: Crowding and preselection revisited. In: Parallel Problem Solving From Nature, North-Holland, pp. 27–36 (1992)Google Scholar
  20. 20.
    Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann Publishers Inc., San Francisco (1995)Google Scholar
  21. 21.
    Lacy, S.E., Lones, M.A., Smith, S.L.: Forming classifier ensembles with multimodal evolutionary algorithms. In: IEEE Congress on Evolutionary Computation (CEC), pp. 723–729 (2015)Google Scholar
  22. 22.
    Will, A., Bustos, J., Bocco, M., Gotay, J., Lamelas, C.: On the use of niching genetic algorithms for variable selection in solar radiation estimation. Renew. Energy 50, 168–176 (2013)CrossRefGoogle Scholar
  23. 23.
    Yannibelli, V., Amandi, A.: A deterministic crowding evolutionary algorithm to form learning teams in a collaborative learning context. Expert Syst. Appl. 39(10), 8584–8592 (2012)CrossRefGoogle Scholar
  24. 24.
    Villani, M., Barbieri, A., Serra, R.: A dynamical model of genetic networks for cell differentiation. PloS one 6(3), e17703 (2011)CrossRefGoogle Scholar
  25. 25.
    Shalizi, C.R., Camperi, M.F., Klinkner, K.L.: Discovering Functional Communities in Dynamical Networks. In: Airoldi, E., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 140–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Sporns, O., Tononi, G., Edelman, G.: Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10(2), 127–141 (2000)CrossRefGoogle Scholar
  27. 27.
    Cover, T., Thomas, A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006)zbMATHGoogle Scholar
  28. 28.
    Villani, M., Carra, P., Roli, A., Filisetti, A., Serra, R.: On the robustness of the detection of relevant sets in complex dynamical systems. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.) WIVACE 2015. CCIS, vol. 587, pp. 15–28. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  29. 29.
    Anzoise, V., Sardo, S.: Dynamic systems and the role of evaluation: the case of the green communities project. Eval. Program Plan. 54, 162–172 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Laura Sani
    • 1
  • Michele Amoretti
    • 1
    Email author
  • Emilio Vicari
    • 1
  • Monica Mordonini
    • 1
  • Riccardo Pecori
    • 1
    • 4
  • Andrea Roli
    • 2
  • Marco Villani
    • 3
  • Stefano Cagnoni
    • 1
  • Roberto Serra
    • 3
  1. 1.Dip. di Ingegneria dell’InformazioneUniversità degli Studi di ParmaParmaItaly
  2. 2.Dip. di Informatica - Scienza e IngegneriaUniversità di BolognaSede di CesenaItaly
  3. 3.Dip. di Scienze Fisiche, Informatiche e MatematicheUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
  4. 4.SMARTest Research CentreUniversità eCAMPUSNovedrateItaly

Personalised recommendations