Learning for Verification in Embedded Systems: A Case Study

  • Ali Khalili
  • Massimo Narizzano
  • Armando Tacchella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)

Abstract

Verification of embedded systems is challenging whenever control programs rely on black-box hardware components. Unless precise specifications of such components are fully available, learning their structured models is a powerful enabler for verification, but it can be inefficient when the system to be learned is data-intensive rather than control-intensive. We contribute a methodology to attack this problem based on a specific class of automata which are well suited to model systems wherein data paths are known to be decoupled from control paths. We test our approach by combining learning and verification to assess the correctness of grey-box programs relying on FIFO register circuitry to control an elevator system.

Keywords

Automata learning Formal verification Knowledge-based software engineering 

References

  1. 1.
    Howar, F., Steffen, B.: Learning models for verification and testing — special track at ISoLA 2014 track introduction. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 199–201. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45234-9_14 Google Scholar
  2. 2.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge (2008)MATHGoogle Scholar
  3. 3.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed Systems. IFIP, vol. 28, pp. 225–240. Springer, Heidelberg (1999). doi:10.1007/978-0-387-35578-8_13 CrossRefGoogle Scholar
  4. 4.
    Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Logic J. IGPL 14(5), 729–744 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. Int. J. Softw. Tools Technol. Transfer (STTT) 11(5), 393–407 (2009)CrossRefGoogle Scholar
  6. 6.
    Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34026-0_41 CrossRefGoogle Scholar
  7. 7.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Khalili, A., Tacchella, A.: Learning nondeterministic Mealy machines. In: Proceedings of the 12th International Conference on Grammatical Inference (ICGI), pp. 109–123 (2014)Google Scholar
  9. 9.
    Aarts, F.: Tomte: Bridging the Gap between Active Learning and Real-World Systems. Ph.D. thesis, Radboud University Nijmegen (2014)Google Scholar
  10. 10.
    Holzmann, G.J.: The model checker Spin. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nagafuji, K., Yamaguchi, S.: Éclair: An elevator group controller model checking system based on s-ring and spin. In: 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE), pp. 178–181. IEEE (2014)Google Scholar
  12. 12.
    Attie, P.C., Lorenz, D.H., Portnova, A., Chockler, H.: Behavioral compatibility without state explosion: design and verification of a component-based elevator control system. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 33–49. Springer, Heidelberg (2006). doi:10.1007/11783565_3 CrossRefGoogle Scholar
  13. 13.
    Gold, E.M.: System identification via state characterization. Automatica 8(5), 621–636 (1972)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Niese, O.: An Integrated Approach to Testing Complex Systems. Ph.D. thesis, Universität Dortmund, Dortmund, Germany (2003)Google Scholar
  15. 15.
    Shahbaz, M.: Reverse Engineering Enhanced State Models of Black Box Software Components to Support Integration Testing. Ph.D. thesis, Institut Polytechnique de Grenoble, Grenoble, France (2008)Google Scholar
  16. 16.
    Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21455-4_8 CrossRefGoogle Scholar
  17. 17.
    Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT press, Cambridge (1999)Google Scholar
  18. 18.
    Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual, vol. 1003. Addison-Wesley, Reading (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ali Khalili
    • 1
  • Massimo Narizzano
    • 1
  • Armando Tacchella
    • 1
  1. 1.DIBRISGenovaItaly

Personalised recommendations