Context-Awareness for Multi-sensor Data Fusion in Smart Environments

  • Alessandra De PaolaEmail author
  • Pierluca Ferraro
  • Salvatore Gaglio
  • Giuseppe Lo Re
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)


Multi-sensor data fusion is extensively used to merge data collected by heterogeneous sensors deployed in smart environments. However, data coming from sensors are often noisy and inaccurate, and thus probabilistic techniques, such as Dynamic Bayesian Networks, are often adopted to explicitly model the noise and uncertainty of data.

This work proposes to improve the accuracy of probabilistic inference systems by including context information, and proves the suitability of such an approach in the application scenario of user activity recognition in a smart home environment. However, the selection of the most convenient set of context information to be considered is not a trivial task. To this end, we carried out an extensive experimental evaluation which shows that choosing the right combination of context information is fundamental to maximize the inference accuracy.


Multi-sensor data fusion Dynamic Bayesian Networks Context awareness 


  1. 1.
    Lo Re, G., Morana, M., Ortolani, M.: Improving user experience via motion sensors in an ambient intelligence scenario. In: Pervasive and Embedded Computing and Communication Systems (PECCS), 2013, pp. 29–34 (2013)Google Scholar
  2. 2.
    De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: Mimicking biological mechanisms for sensory information fusion. Biol. Inspired Cogn. Archit. 3, 27–38 (2013)Google Scholar
  3. 3.
    Cook, D.J.: Learning setting-generalized activity models for smart spaces. IEEE Intell. Syst. 2010(99), 1 (2010)Google Scholar
  4. 4.
    Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning. PhD thesis, University of California, Berkeley (2002)Google Scholar
  5. 5.
    Cheng, N., Wu, Q.: A decision-making method for fire detection data fusion based on Bayesian approach. In: Proceedings of 4th International Conference on Digital Manufacturing and Automation (ICDMA), pp. 21–23. IEEE (2013)Google Scholar
  6. 6.
    Zhang, Y., Ji, Q.: Active and dynamic information fusion for multisensor systems with dynamic Bayesian networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(2), 467–472 (2006)CrossRefGoogle Scholar
  7. 7.
    De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: User detection through multi-sensor fusion in an AmI scenario. In: Proceedings of 15th International Conference on Information Fusion (FUSION), pp. 2502–2509. IEEE (2012)Google Scholar
  8. 8.
    De Paola, A., Gaglio, S., Lo Re, G., Ortolani, M.: Multi-sensor fusion through adaptive Bayesian networks. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 360–371. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23954-0_33 CrossRefGoogle Scholar
  9. 9.
    Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013)CrossRefGoogle Scholar
  10. 10.
    Huebscher, M.C., McCann, J.A.: Adaptive middleware for context-aware applications in smart-homes. In: Proceedings of 2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing, pp. 111–116. ACM (2004)Google Scholar
  11. 11.
    Padovitz, A., Loke, S.W., Zaslavsky, A., Burg, B., Bartolini, C.: An approach to data fusion for context awareness. In: Dey, A., Kokinov, B., Leake, D., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 353–367. Springer, Heidelberg (2005). doi: 10.1007/11508373_27 CrossRefGoogle Scholar
  12. 12.
    Cho, K., Hwang, I., Kang, S., Kim, B., Lee, J., Lee, S., Park, S., Song, J., Rhee, Y.: HiCon: a hierarchical context monitoring and composition framework for next-generation context-aware services. IEEE Netw. 22(4), 34–42 (2008)CrossRefGoogle Scholar
  13. 13.
    Kang, S., Lee, J., Jang, H., Lee, Y., Park, S., Song, J.: A scalable and energy-efficient context monitoring framework for mobile personal sensor networks. IEEE Trans. Mob. Comput. 9(5), 686–702 (2010)CrossRefGoogle Scholar
  14. 14.
    Nath, S.: ACE: exploiting correlation for energy-efficient and continuous context sensing. In: Proceedings of 10th ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 29–42. ACM (2012)Google Scholar
  15. 15.
    Cook, D., Augusto, J., Jakkula, V.: Ambient intelligence: technologies, applications, and opportunities. Pervasive and Mob. Comput. 5(4), 277–298 (2009)CrossRefGoogle Scholar
  16. 16.
    De Paola, A., Farruggia, A., Gaglio, S., Lo Re, G., Ortolani, M.: Exploiting the human factor in a WSN-based system for ambient intelligence. In: International Conference on Complex, Intelligent and Software Intensive Systems, 2009. CISIS 2009, pp. 748–753 (2009)Google Scholar
  17. 17.
    Krishnan, N.C., Cook, D.J.: Activity recognition on streaming sensor data. Pervasive Mob. Comput. 10, 138–154 (2012)CrossRefGoogle Scholar
  18. 18.
    Gaglio, S., Lo Re, G., Morana, M.: Human activity recognition process using 3-D posture data. IEEE Trans. Hum. Mach. Syst. 45(5), 586–597 (2015)CrossRefGoogle Scholar
  19. 19.
    Gao, L., Bourke, A., Nelson, J.: Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med. Eng. Phys. 36(6), 779–785 (2014)CrossRefGoogle Scholar
  20. 20.
    Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)CrossRefGoogle Scholar
  21. 21.
    De Paola, A., Gagliano, L.: Design of an adaptive Bayesian system for sensor data fusion. In: Gaglio, S., Lo Re, G. (eds.) Advances onto the Internet of Things. Advances in Intelligent Systems and Computing, pp. 61–76. Springer, Switzerland (2014). doi: 10.1007/978-3-319-03992-3_5 CrossRefGoogle Scholar
  22. 22.
    Meinhold, R.J., Singpurwalla, N.D.: Understanding the Kalman filter. Am. Stat. 37(2), 123–127 (1983)MathSciNetGoogle Scholar
  23. 23.
    Sanchez, D., Tentori, M., Favela, J.: Hidden Markov models for activity recognition in Ambient Intelligence environments. In: Proceedings of 8th Mexican International Conference on Current Trends in Computer Science, pp. 33–40. IEEE (2007)Google Scholar
  24. 24.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  25. 25.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  26. 26.
    Nimier, V.: Introducing contextual information in multisensor tracking algorithms. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 595–604. Springer, Heidelberg (1995). doi: 10.1007/BFb0035992 CrossRefGoogle Scholar
  27. 27.
    Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16(2), 97–166 (2001)CrossRefGoogle Scholar
  28. 28.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the Internet of Things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)CrossRefGoogle Scholar
  29. 29.
    Lalomia, A., Lo Re, G., Ortolani, M.: A hybrid framework for soft real-time WSN simulation. In: Proceedings of 13th IEEE/ACM International Symposium Distributed Simulation and Real Time Applications (DS-RT), pp. 201–207 (2009)Google Scholar
  30. 30.
    Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Weiss, G.M., Lockhart, J.W.: The impact of personalization on smartphone-based activity recognition. In: AAAI Workshop on Activity Context Representation: Techniques and Languages (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Alessandra De Paola
    • 1
    Email author
  • Pierluca Ferraro
    • 1
  • Salvatore Gaglio
    • 1
  • Giuseppe Lo Re
    • 1
  1. 1.DICGIM DepartmentUniversity of PalermoPalermoItaly

Personalised recommendations