Abducing Compliance of Incomplete Event Logs

  • Federico Chesani
  • Riccardo De Masellis
  • Chiara Di Francescomarino
  • Chiara GhidiniEmail author
  • Paola Mello
  • Marco Montali
  • Sergio Tessaris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)


The capability to store data about business processes execution in so-called Event Logs has brought to the diffusion of tools for the analysis of process executions and for the assessment of the goodness of a process model. Nonetheless, these tools are often very rigid in dealing with Event Logs that include incomplete information about the process execution. Thus, while the ability of handling incomplete event data is one of the challenges mentioned in the process mining manifesto, the evaluation of compliance of an execution trace still requires an end-to-end complete trace to be performed. This paper exploits the power of abduction to provide a flexible, yet computationally effective, framework to deal with different forms of incompleteness in an Event Log. Moreover it proposes a refinement of the classical notion of compliance into strong and conditional compliance to take into account incomplete logs.


Abductive logic programming Formal verification Compliance in business process Incompleteness in business processes 


  1. 1.
    Aalst, W.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28108-2_19 CrossRefGoogle Scholar
  2. 2.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: Proceedings of EDOC. IEEE Computer Society (2011)Google Scholar
  3. 3.
    Leoni, M., Maggi, F.M., Aalst, W.M.P.: Aligning event logs and declarative process models for conformance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 82–97. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32885-5_6 CrossRefGoogle Scholar
  4. 4.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  6. 6.
    Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow modelling. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) 25 Years of CAiSE. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36926-1_19 Google Scholar
  7. 7.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)CrossRefGoogle Scholar
  8. 8.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM Trans. Comput. Log. 9(4), 29:1–29:43 (2008). MathSciNetCrossRefGoogle Scholar
  9. 9.
    On process mining, I.T.F.: XES standard definition (2015).
  10. 10.
    Di Francescomarino, C., Ghidini, C., Tessaris, S., Sandoval, I.V.: Completing workflow traces using action languages. In: Zdravkovic, J., Kirikova, M., Johannesson, J. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 314–330. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19069-3_20 CrossRefGoogle Scholar
  11. 11.
    Kakas, A.C., Mancarella, P.: Abduction and abductive logic programming. In: Proceedings of ICLP (1994)Google Scholar
  12. 12.
    Fung, T.H., Kowalski, R.A.: The iff proof procedure for abductive logic programming. J. Log. Program. 33(2), 151–165 (1997). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Alberti, M., Gavanelli, M., Lamma, E.: The CHR-based implementation of the SCIFF abductive system. Fundam. Inform. 124, 365–381 (2013)MathSciNetGoogle Scholar
  14. 14.
    Chesani, F., De Masellis, R., Di Francescomarino, C., Ghidini, C., Mello, P., Montali, M., Tessaris, S.: Abducing compliance of incomplete event logs. Technical report submit/1584687, arXiv (2016)Google Scholar
  15. 15.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kunen, K.: Negation in logic programming. J. Log. Program. 4(4), 289–308 (1987). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Clark, K.L.: Negation as Failure. In: Proceedings of Logic and Data Bases. Plenum Press (1978)Google Scholar
  18. 18.
    Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The semantics of constraint logic programs. J. Log. Program. 37(1–3), 1–46 (1998). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Montali, M.: Specification and Verification of Declarative Open Interaction Models: A Logic-Based Approach. LNBIP, vol. 56. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  20. 20.
    Rogge-Solti, A., Mans, R.S., Aalst, W.M.P., Weske, M.: Improving documentation by repairing event logs. In: Grabis, J., Kirikova, M., Zdravkovic, J., Stirna, J. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 129–144. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41641-5_10 CrossRefGoogle Scholar
  21. 21.
    Bertoli, P., Francescomarino, C., Dragoni, M., Ghidini, C.: Reasoning-based techniques for dealing with incomplete business process execution traces. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249, pp. 469–480. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03524-6_40 CrossRefGoogle Scholar
  22. 22.
    Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of relational data-centric dynamic systems with external services, pp. 163–174. ACM Press (2013)Google Scholar
  23. 23.
    De Masellis, R., Maggi, F.M., Montali, M.: Monitoring data-aware business constraints with finite state automata. In: Proceedings of ICSSP. ACM Press (2014)Google Scholar
  24. 24.
    Chesani, F., Mello, P., Montali, M., Storari, S.: Testing careflow process execution conformance by translating a graphical language to computational logic. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 479–488. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73599-1_64 CrossRefGoogle Scholar
  25. 25.
    Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreographiess. TWEB 4(1), 3:1–3:62 (2010). CrossRefGoogle Scholar
  26. 26.
    Mian, U.S., den Hartog, J., Etalle, S., Zannone, N.: Auditing with incomplete logs. In: Proceedings of the 3rd Workshop on Hot Issues in Security Principles and Trust (2015)Google Scholar
  27. 27.
    Mancarella, P., Terreni, G., Sadri, F., Toni, F., Endriss, U.: The CIFF proof procedure for abductive logic programming with constraints: theory, implementation and experiments. TPLP 9(6), 691 (2009)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kumar, A., Sabbella, S.R., Barton, R.R.: Managing controlled violation of temporal process constraints. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 280–296. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23063-4_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Federico Chesani
    • 1
  • Riccardo De Masellis
    • 2
  • Chiara Di Francescomarino
    • 2
  • Chiara Ghidini
    • 2
    Email author
  • Paola Mello
    • 1
  • Marco Montali
    • 3
  • Sergio Tessaris
    • 3
  1. 1.University of BolognaBolognaItaly
  2. 2.FBK-IRSTTrentoItaly
  3. 3.Free University of Bozen–BolzanoBozen-BolzanoItaly

Personalised recommendations