Advertisement

A Subdivision Approach to the Solution of Polynomial Constraints over Finite Domains Using the Modified Bernstein Form

  • Federico BergentiEmail author
  • Stefania Monica
  • Gianfranco Rossi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)

Abstract

This paper discusses an algorithm to solve polynomial constraints over finite domains, namely constraints which are expressed in terms of equalities, inequalities and disequalities of polynomials with integer coefficients whose variables are associated with finite domains. The proposed algorithm starts with a preliminary step intended to rewrite all constraints to a canonical form. Then, the modified Bernstein form of obtained polynomials is used to recursively restrict the domains of variables, which are assumed to be initially approximated by a bounding box. The proposed algorithm proceeds by subdivisions, and it ensures that each variable is eventually associated with the inclusion-maximal finite domain in which the set of constraints is satisfiable. If arbitrary precision integer arithmetic is available, no approximation is introduced in the solving process because the coefficients of the modified Bernstein form are integer numbers.

Keywords

Bernstein form Finite domain constraints Constraint logic programming 

References

  1. 1.
    Bergenti, F., Monica, S., Rossi, G.: Polynomial constraint solving over finite domains with the modified Bernstein form. In: Fiorentini, C., Momigliano, A. (eds.) Proceedings of the 31st Italian Conference on Computational Logic, vol. 1645. CEUR Workshop Proceedings, pp. 118–131. RWTH Aachen (2016)Google Scholar
  2. 2.
    Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Triska, M.: The finite domain constraint solver of SWI-prolog. In: Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 307–316. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29822-6_24 CrossRefGoogle Scholar
  4. 4.
    Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Pract. Logic Program. 12(1–2), 67–96 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. de Kharkov 2:XIII(1), 1–2 (1912)zbMATHGoogle Scholar
  6. 6.
    Lorentz, G.G.: Bernstein Polynomials. University of Toronto Press, Toronto (1953)zbMATHGoogle Scholar
  7. 7.
    Sánchez-Reyes, J.: Algebraic manipulation in the Bernstein form made simple via convolutions. Comput. Aided Des. 35, 959–967 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Comput. Aided Geom. Des. 5(1), 1–26 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nataraj, P., Arounassalame, M.: A new subdivision algorithm for the Bernstein polynomial approach to global optimization. Int. J. Autom. Comput. 4(4), 342–352 (2007)CrossRefGoogle Scholar
  10. 10.
    Mourrain, B., Pavone, J.: Subdivision methods for solving polynomial equations. J. Symbolic Comput. 44(3), 292–306 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Garloff, J.: Convergent bounds for the range of multivariate polynomials. In: Nickel, K. (ed.) IMath 1985. LNCS, vol. 212, pp. 37–56. Springer, Heidelberg (1986). doi: 10.1007/3-540-16437-5_5 CrossRefGoogle Scholar
  12. 12.
    Garloff, J.: The Bernstein algorithm. Interval Comput. 2, 154–168 (1993)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29(6), 379–419 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Garloff, J., Smith, A.P.: Solution of systems of polynomial equations by using Bernstein expansion. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods, pp. 87–97. Springer, Vienna (2001)CrossRefGoogle Scholar
  15. 15.
    Ray, S., Nataraj, P.: An efficient algorithm for range computation of polynomials using the Bernstein form. J. Global Optim. 45, 403–426 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Federico Bergenti
    • 1
    Email author
  • Stefania Monica
    • 1
  • Gianfranco Rossi
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di ParmaParmaItaly

Personalised recommendations