Advertisement

On the Application of Answer Set Programming to the Conference Paper Assignment Problem

  • Giovanni Amendola
  • Carmine DodaroEmail author
  • Nicola Leone
  • Francesco Ricca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)

Abstract

Among the tasks to be carried out by conference organizers is the one of assigning reviewers to papers. That problem is known in the literature as the Conference Paper Assignment Problem (CPAP). In this paper we approach the solution of a reasonably rich variant of the CPAP by means of Answer Set Programming (ASP). ASP is an established logic-based programming paradigm which has been successfully applied for solving complex problems arising in Artificial Intelligence. We show how the CPAP can be elegantly encoded by means of an ASP program, and we analyze the results of an experiment, conducted on real-world data, that outlines the viability of our solution.

Keywords

Answer Set Programming Conference Paper Assignment Problem Applications 

Notes

Acknowledgments

This work was partially supported by MIUR under PON project “Ba2Know (Business Analytics to Know) Service Innovation - LAB”, N. PON03PE_00 001_1, and by MISE under project “PIUCultura (Paradigmi Innovativi per l’Utilizzo della Cultura)”, N. F/020016/01-02/X27.

References

  1. 1.
    Goldsmith, J., Sloan, R.H.: The AI conference paper assignment problem. In: Proceedings of thr AAAI Workshop on Preference Handling for Artificial Intelligence, pp. 53–57 (2007)Google Scholar
  2. 2.
    Wang, F., Chen, B., Miao, Z.: A Survey on Reviewer Assignment Problem. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 718–727. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69052-8_75 CrossRefGoogle Scholar
  3. 3.
    Manlove, D., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theor. Comput. Sci. 276(1–2), 261–279 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  5. 5.
    Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: IJCAI, pp. 2677–2683. AAAI Press (2015)Google Scholar
  6. 6.
    Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunctive datalog system DLV. In: Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24206-9_17 CrossRefGoogle Scholar
  7. 7.
    Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 368–383. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23264-5_31 CrossRefGoogle Scholar
  9. 9.
    Giunchiglia, E., Leone, N., Maratea, M.: On the relation among answer set solvers. Ann. Math. Artif. Intell. 53(1–4), 169–204 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or, Between cmodels and smodels). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 37–51. Springer, Heidelberg (2005). doi: 10.1007/11562931_6 CrossRefGoogle Scholar
  11. 11.
    Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set programming. TPLP 14(6), 841–868 (2014)MathSciNetGoogle Scholar
  12. 12.
    Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in DLV: implementation, evaluation, and comparison to QBF solvers. J. Algorithms 63(1–3), 70–89 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-advisor: a case study in answer set planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001). doi: 10.1007/3-540-45402-0_39 CrossRefGoogle Scholar
  14. 14.
    Gaggl, S.A., Manthey, N., Ronca, A., Wallner, J.P., Woltran, S.: Improved answer-set programming encodings for abstract argumentation. TPLP 15(4–5), 434–448 (2015)MathSciNetGoogle Scholar
  15. 15.
    Campeotto, F., Dovier, A., Pontelli, E.: A declarative concurrent system for protein structure prediction on GPU. J. Exp. Theor. Artif. Intell. 27(5), 503–541 (2015)CrossRefGoogle Scholar
  16. 16.
    Erdem, E., Öztok, U.: Generating explanations for biomedical queries. TPLP 15(1), 35–78 (2015)MathSciNetGoogle Scholar
  17. 17.
    Fionda, V., Palopoli, L., Panni, S., Rombo, S.E.: A technique to search for functional similarities in protein-protein interaction networks. IJDMB 3(4), 431–453 (2009)CrossRefGoogle Scholar
  18. 18.
    Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large inconsistent data via ASP. TPLP 15(4–5), 696–710 (2015)MathSciNetGoogle Scholar
  19. 19.
    Marileo, M.C., Bertossi, L.E.: The consistency extractor system: Answer set programs for consistent query answering in databases. Data Knowl. Eng. 69(6), 545–572 (2010)CrossRefGoogle Scholar
  20. 20.
    Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU games via answer set programming. In: IJCAI, pp. 38–45. IJCAI/AAAI Press (2016)Google Scholar
  21. 21.
    Grasso, G., Leone, N., Manna, M., Ricca, F.: ASP at work: spin-off and applications of the DLV system. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 432–451. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20832-4_27 CrossRefGoogle Scholar
  22. 22.
    Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Shchekotykhin, K.: Combining answer set programming and domain heuristics for solving hard industrial problems. TPLP 16(5-6) (2016, to appear)Google Scholar
  23. 23.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Alviano, M., Faber, W., Gebser, M.: Rewriting recursive aggregates in answer set programming: back to monotonicity. TPLP 15(4–5), 559–573 (2015)MathSciNetGoogle Scholar
  25. 25.
    Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)CrossRefGoogle Scholar
  26. 26.
    Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in answer set programming. Artif. Intell. 175(1), 278–298 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)CrossRefzbMATHGoogle Scholar
  28. 28.
    Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 40–54. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23264-5_5 CrossRefGoogle Scholar
  31. 31.
    Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. J. Econ. Theory 100(2), 295–328 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Demange, G., Alkan, A., Gale, D.: Fair allocation of indivisible goods and money and criteria of justice. Econometrica 59(4), 1023–1039 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Hartvigsen, D., Wei, J.C., Czuchlewski, R.: The conference paper-reviewer assignment problem. Decis. Sci. 30(3), 865–876 (1999)CrossRefGoogle Scholar
  34. 34.
    Janak, S.L., Taylor, M.S., Floudas, C.A., Burka, M., Mountziaris, T.J.: Novel and effective integer optimization approach for the NSF panel-assignment problem: a multiresource and preference-constrained generalized assignment problem. Ind. Eng. Chem. Res. 45(1), 258–265 (2006)CrossRefGoogle Scholar
  35. 35.
    Svensson, L.G.: Strategy-proof allocation of indivisible goods. Soc. Choice Welf. 16(4), 557–567 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Das, G.S., Göçken, T.: A fuzzy approach for the reviewer assignment problem. Comput. Ind. Eng. 72, 50–57 (2014)CrossRefGoogle Scholar
  37. 37.
    Conry, D., Koren, Y., Ramakrishnan, N.: Recommender systems for the conference paper assignment problem. In: RecSys, pp. 357–360. ACM (2009)Google Scholar
  38. 38.
    Mimno, D.M., McCallum, A.: Expertise modeling for matching papers with reviewers. In: ACM SIGKDD, pp. 500–509. ACM (2007)Google Scholar
  39. 39.
    Li, X., Watanabe, T.: Automatic Paper-to-reviewer Assignment, based on the Matching Degree of the Reviewers. In: KES, vol. 22. Procedia Computer Science, pp. 633–642. Elsevier (2013)Google Scholar
  40. 40.
    Long, C., Wong, R.C., Peng, Y., Ye, L.: On good and fair paper-reviewer assignment. In: ICDM, pp. 1145–1150. IEEE Computer Society (2013)Google Scholar
  41. 41.
    Wang, F., Zhou, S., Shi, N.: Group-to-group reviewer assignment problem. Comput. OR 40(5), 1351–1362 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Ryabokon, A., Polleres, A., Friedrich, G., Falkner, A.A., Haselböck, A., Schreiner, H.: (Re)Configuration using web data: a case study on the reviewer assignment problem. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp. 258–261. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33203-6_28 CrossRefGoogle Scholar
  43. 43.
    Fionda, V., Greco, G.: The complexity of mixed multi-unit combinatorial auctions: tractability under structural and qualitative restrictions. Artif. Intell. 196, 1–25 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Fionda, V., Pirrò, G.: Querying graphs with preferences. In: CIKM, pp. 929–938. ACM (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Giovanni Amendola
    • 1
  • Carmine Dodaro
    • 1
    Email author
  • Nicola Leone
    • 1
  • Francesco Ricca
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of CalabriaRendeItaly

Personalised recommendations