Advertisement

Answer Set Enumeration via Assumption Literals

  • Mario Alviano
  • Carmine DodaroEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)

Abstract

Modern, efficient Answer Set Programming solvers implement answer set search via non-chronological backtracking algorithms. The extension of these algorithms to answer set enumeration is nontrivial. In fact, adding blocking constraints to discard already computed answer sets is inadequate because the introduced constraints may not fit in memory or deteriorate the efficiency of the solver. On the other hand, the algorithm implemented by clasp, which can run in polynomial space, requires invasive modifications of the answer set search procedure. The algorithm is revised in this paper so as to make it almost independent from the underlying answer set search procedure, provided that the procedure accepts as input a logic program and a list of assumption literals, and returns either an answer set (and associated branching literals) or an unsatisfiable core. The revised algorithm is implemented in wasp, and compared empirically to the state of the art solver clasp.

Keywords

Answer Set Programming Enumeration Assumption literals 

Notes

Acknowledgement

This work was partially supported by the National Group for Scientific Computation (GNCS-INDAM), by the Italian Ministry of Economic Development under project “PIUCultura (Paradigmi Innovativi per l’Utilizzo della Cultura)” n. F/020016/01–02/X27, and by the Italian Ministry of University and Research under PON project “Ba2Know (Business Analytics to Know) Service Innovation - LAB”, No. PON03PE_00001_1.

References

  1. 1.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Alviano, M., Dodaro, C., Ricca, F.: Anytime computation of cautious consequences in answer set programming. TPLP 14(4–5), 755–770 (2014)zbMATHGoogle Scholar
  3. 3.
    Bliem, B., Kaufmann, B., Schaub, T., Woltran, S.: ASP for anytime dynamic programming on tree decompositions. In: IJCAI. AAAI Press (2016)Google Scholar
  4. 4.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brochenin, R., Lierler, Y., Maratea, M.: Abstract disjunctive answer set solvers. In: ECAI, vol. 263. Frontiers in Artificial Intelligence and Applications, pp. 165–170. IOS Press (2014)Google Scholar
  6. 6.
    Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or, Between cmodels and smodels). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 37–51. Springer, Heidelberg (2005). doi: 10.1007/11562931_6 CrossRefGoogle Scholar
  7. 7.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: ICCAD, pp. 279–285. IEEE Computer Society (2001)Google Scholar
  11. 11.
    Audemard, G., Simon, L.: Refining Restarts Strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumeration. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 136–148. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72200-7_13 CrossRefGoogle Scholar
  13. 13.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Alviano, M., Dodaro, C., Ricca, F.: Reduct-based stability check using literal assumptions. In: ASPOCP (2015)Google Scholar
  15. 15.
    Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive answer set solving. In: IJCAI, IJCAI/AAAI (2013)Google Scholar
  16. 16.
    Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems by SAT checkers. Artif. Intell. 151(1–2), 177–212 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 40–54. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23264-5_5 CrossRefGoogle Scholar
  18. 18.
    Dodaro, C., Alviano, M., Faber, W., Leone, N., Ricca, F., Sirianni, M.: The birth of a WASP: preliminary report on a new ASP solver. In: Fioravanti, F. (ed.) CILC 2011, vol. 810. CEUR Workshop Proceedings, pp. 99–113 (2011)Google Scholar
  19. 19.
    Alviano, M., et al.: The fourth answer set programming competition: preliminary report. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 42–53. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40564-8_5 CrossRefGoogle Scholar
  20. 20.
    Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming competition. TPLP 14(1), 117–135 (2014)Google Scholar
  22. 22.
    Gebser, M., Maratea, M., Ricca, F.: The design of the sixth answer set programming competition. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 531–544. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23264-5_44 CrossRefGoogle Scholar
  23. 23.
    Gebser, M., Maratea, M., Ricca, F.: What’s hot in the answer set programming competition. In: AAAI, pp. 4327–4329. AAAI Press (2016)Google Scholar
  24. 24.
    Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 368–383. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23264-5_31 CrossRefGoogle Scholar
  25. 25.
    Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunctive datalog system DLV. In: Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24206-9_17 CrossRefGoogle Scholar
  26. 26.
    Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in DLV: implementation, evaluation, and comparison to QBF solvers. J. Algorithms 63(1–3), 70–89 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40564-8_6 CrossRefGoogle Scholar
  28. 28.
    Giunchiglia, E., Leone, N., Maratea, M.: On the relation among answer set solvers. Ann. Math. Artif. Intell. 53(1–4), 169–204 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. J. Autom. Reasoning 36(4), 345–377 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-tight programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 346–350. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-24609-1_32 CrossRefGoogle Scholar
  31. 31.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI, pp. 399–404 (2009)Google Scholar
  32. 32.
    Biere, A.: Lingeling essentials, a tutorial on design and implementation aspects of the the SAT solver lingeling. In: POS, vol. 27. EPiC Series, p. 88. EasyChair (2014)Google Scholar
  33. 33.
    Alviano, M., Faber, W.: Stable model semantics of abstract dialectical frameworks revisited: a logic programming perspective. In: IJCAI, pp. 2684–2690. AAAI Press (2015)Google Scholar
  34. 34.
    Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J.P., Woltran, S.: Abstract dialectical frameworks revisited. In: IJCAI, IJCAI/AAAI (2013)Google Scholar
  35. 35.
    Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: KR, AAAI Press (2010)Google Scholar
  36. 36.
    Bistarelli, S., Rossi, F., Santini, F.: A comparative test on the enumeration of extensions in abstract argumentation. Fundam. Inform. 140(3–4), 263–278 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary report of the first international competition on computational models of argumentation. AI Mag. 37(1), 102 (2016)Google Scholar
  38. 38.
    Alviano, M., Faber, W.: The complexity boundary of answer set programming with generalized atoms under the FLP semantics. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 67–72. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40564-8_7 CrossRefGoogle Scholar
  39. 39.
    Alviano, M., Faber, W., Gebser, M.: Rewriting recursive aggregates in answer set programming: back to monotonicity. TPLP 15(4–5), 559–573 (2015)MathSciNetGoogle Scholar
  40. 40.
    Alviano, M., Leone, N.: Complexity and compilation of gz-aggregates in answer set programming. TPLP 15(4–5), 574–587 (2015)MathSciNetGoogle Scholar
  41. 41.
    Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in answer set programming. Artif. Intell. 175(1), 278–298 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core shrinking. TPLP (2016, in press)Google Scholar
  43. 43.
    Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: Optimum stable model search: algorithms and implementation. J. Logic Comput. (2015)Google Scholar
  44. 44.
    Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: IJCAI 2015, pp. 2677–2683. AAAI Press (2015)Google Scholar
  45. 45.
    Fionda, V., Pirrò, G.: Querying graphs with preferences. In: CIKM, pp. 929–938. ACM (2013)Google Scholar
  46. 46.
    Fionda, V., Greco, G.: The complexity of mixed multi-unit combinatorial auctions: tractability under structural and qualitative restrictions. Artif. Intell. 196, 1–25 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of CalabriaRende (cs)Italy

Personalised recommendations