Understanding Characteristics of Evolved Instances for State-of-the-Art Inexact TSP Solvers with Maximum Performance Difference

  • Jakob BossekEmail author
  • Heike Trautmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10037)


State of the Art inexact solvers of the NP-hard Traveling Salesperson Problem (TSP) are known to mostly yield high-quality solutions in reasonable computation times. With the purpose of understanding different levels of instance difficulties, instances for the current State of the Art heuristic TSP solvers LKH+restart and EAX+restart are presented which are evolved using a sophisticated evolutionary algorithm. More specifically, the performance differences of the respective solvers are maximized resulting in instances which are easier to solve for one solver and much more difficult for the other. Focusing on both optimization directions, instance features are identified which characterize both types of instances and increase the understanding of solver performance differences.


Transportation Metaheuristics Combinatorial optimization TSP Instance hardness 



The authors acknowledge support by the European Research Center for Information Systems (ERCIS).


  1. 1.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  2. 2.
    Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem. INFORMS J. Comput. 25, 346–363 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1, 119–163 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19084-6_18 CrossRefGoogle Scholar
  5. 5.
    Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI Mag. 35, 48–60 (2014)Google Scholar
  6. 6.
    Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algorithms by learning from evolved instances. Ann. Math. Artif. Intell. 61, 87–104 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann, F.: A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Ann. Math. Artif. Intell. 69, 1–32 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pihera, J., Musliu, N.: Application of machine learning to algorithm selection for TSP. In: Fogel, D., et al. (eds.) Proceedings of the IEEE 26th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE press (2014)Google Scholar
  10. 10.
    Bossek, J.: salesperson: Computation of Instance Feature Sets and R Interface to the State-of-the-Art Solvers for the Traveling Salesperson Problem. R package version 1.0 (2015)Google Scholar
  11. 11.
    Fischer, T., Stützle, T., Hoos, H.H., Merz, P.: An analysis of the hardness of TSP instances for two high-performance algorithms. In: Proceedings of the 6th Metaheuristics International Conference, Vienna, Austria, pp. 361–367 (2005)Google Scholar
  12. 12.
    Mersmann, O., Bischl, B., Bossek, J., Trautmann, H., Markus, W., Neumann, F.: Local search and the traveling salesman problem: a feature-based characterization of problem hardness. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 115–129. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Nallaperuma, S., Wagner, M., Neumann, F., Bischl, B., Mersmann, O., Trautmann, H.: A feature-based comparison of local search and the christofides algorithm for the travelling salesperson problem. In: Foundations of Genetic Algorithms (FOGA) (2013) (accepted)Google Scholar
  14. 14.
    Lacoste, J.D., Hoos, H.H., Stützle, T.: On the empirical time complexity of state-of-the-art inexact tsp solvers. Optimization Letters (to appear)Google Scholar
  15. 15.
    Kerschke, P., Dagefoerde, J.: flacco: Feature-Based Landscape Analysis of Continuous and Constraint Optimization Problems. R package version 1.1 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Information Systems and Statistics GroupUniversity of MünsterMünsterGermany

Personalised recommendations