Advertisement

Cognition Beyond the Classical Information Processing Model: Cognitive Interactivity and the Systemic Thinking Model (SysTM)

  • Gaëlle Vallée-TourangeauEmail author
  • Frédéric Vallée-TourangeauEmail author
Chapter

Abstract

In this chapter , we propose a systemic model of thinking (SysTM) to account for higher cognitive operations such as how an agent makes inferences, solves problems and makes decisions. The SysTM model conceives thinking as a cognitive process that evolves in time and space and results in a new cognitive event (i.e., a new solution to a problem). This presupposes that such cognitive events are emerging from cognitive interactivity, which we define as the meshed network of reciprocal causations between an agent’s mental processing and the transformative actions she applies to her immediate environment to achieve a cognitive result. To explain how cognitive interactivity results in cognitive events, SysTM builds upon the classical information processing model but breaks from the view that cognitive events result from a linear information processing path originating in the perception of a problem stimulus that is mentally processed to produce a cognitive event. Instead, SysTM holds that information processing in thinking evolves through a succession of deductive and inductive processing loops. Both loops give rise to transformative actions on the physical information layout, resulting in new perceptual inputs which inform the next processing loop. Such actions result from the enaction of mental action plans in deductive loops and from unplanned direct perception of action possibilities or affordances in inductive loops. To account for direct perception, we introduce the concept of an affordance pool to refer to a short term memory storage of action possibilities in working memory. We conclude by illustrating how SysTM can be used to derive new predictions and guide the study of cognitive interactivity in thinking.

Keywords

Cognitive interactivity Systemic thinking model Decision-making Thinking and reasoning Affordances Distributed cognition 

References

  1. Baber, C., Cengiz, T. G., & Parekh, M. (2014). Tool use as distributed cognition: How tools help, hinder and define manual skill. Frontiers in Psychology, 5, 1–14. doi: 10.3389/fpsyg.2014.00116.CrossRefGoogle Scholar
  2. Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section A, 49, 5–28. doi: 10.1080/713755608.CrossRefGoogle Scholar
  3. Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29. doi: 10.1146/annurev-psych-120710-100422.CrossRefGoogle Scholar
  4. Baddeley, A. D. (1966). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. Quarterly Journal of Experimental Psychology, 18, 362–365. doi: 10.1080/14640746608400055.CrossRefGoogle Scholar
  5. Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575–589. doi: 10.1016/S0022-5371(75)80045-4.CrossRefGoogle Scholar
  6. Bartlett, F. C. (1995). Remembering: A study in experimental and social psychology (2nd ed.). Cambridge; New York: Cambridge University Press (Original work published 1932).Google Scholar
  7. Brighton, H., & Todd, P. M. (2009). Situating rationality: Ecologically rational decision making with simple heuristics. In P. Robbins & M. Aydede (Eds.), The Cambridge handbook of situated cognition (pp. 322–346). Cambridge: Cambridge University Press.Google Scholar
  8. Broadbent, D. E. (1957). A mechanical model for human attention and immediate memory. Psychological Review, 64, 205.CrossRefGoogle Scholar
  9. Craik, K. J. W. (1948). Theory of the human operator in control systems: II. Man as an element in a control system. British Journal of Psychology: General Section, 38, 142–148. doi: 10.1111/j.2044-8295.1948.tb01149.x.Google Scholar
  10. Davidson, J. E. (1995). The suddenness of insight. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 125–155). Cambridge, MA: The MIT Press.Google Scholar
  11. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.Google Scholar
  12. Fioratou, E., & Cowley, S. J. (2009). Insightful thinking: Cognitive dynamics and material artifacts. Pragmatics & Cognition, 17, 549–572. doi: 10.1075/pc.17.3.04fio.CrossRefGoogle Scholar
  13. Fleck, J. I., & Weisberg, R. W. (2013). Insight versus analysis: Evidence for diverse methods in problem solving. Journal of Cognitive Psychology, 25, 436–463. doi: 10.1080/20445911.2013.779248.CrossRefGoogle Scholar
  14. Fleming, M., & Maglio, P. P. (2015). How physical interaction helps performance in a scrabble-like task. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (pp. 716–721). Austin, TX: Cognitive Science Society.Google Scholar
  15. Fodor, J. A., & Pylyshyn, Z. W. (1981). How direct is visual perception?: Some reflections on Gibson’s “ecological approach”. Cognition, 9, 139–196. doi: 10.1016/0010-0277(81)90009-3.CrossRefGoogle Scholar
  16. Frederick, S. (2005). Cognitive reflection and decision making. The Journal of Economic Perspectives, 19, 25–42.CrossRefGoogle Scholar
  17. Fürst, A. J., & Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory & Cognition, 28, 774–782.CrossRefGoogle Scholar
  18. Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale, NJ: Erlbaum.Google Scholar
  19. Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ (Original work published 1979): Erlbaum.Google Scholar
  20. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684–704. doi: 10.1037/0033-295X.102.4.684
  21. Goldin-Meadow, S. (1999). The role of gesture in communication and thinking. Trends in Cognitive Sciences, 3, 419–429. doi: 10.1016/S1364-6613(99)01397-2.CrossRefGoogle Scholar
  22. Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12, 516–522. doi: 10.1111/1467-9280.00395.CrossRefGoogle Scholar
  23. Greeno, J. G. (1994). Gibson’s affordances. Psychological Review, 101, 336–342. doi: 10.1037/0033-295X.101.2.336.CrossRefGoogle Scholar
  24. Guthrie, L. G., Vallée-Tourangeau, F., Vallée-Tourangeau, G., & Howard, C. (2015). Learning and interactivity in solving a transformation problem. Memory & Cognition, 43, 723–735. doi: 10.3758/s13421-015-0504-8.CrossRefGoogle Scholar
  25. Gyr, J. W. (1972). Is a theory of direct visual perception adequate? Psychological Bulletin, 77, 246.CrossRefGoogle Scholar
  26. Hecht, S. A. (2002). Counting on working memory in simple arithmetic when counting is used for problem solving. Memory & Cognition, 30, 447–455. doi: 10.3758/BF03194945.CrossRefGoogle Scholar
  27. Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15, 534–539. doi: 10.1111/j.0956-7976.2004.00715.x.CrossRefGoogle Scholar
  28. Hertwig, R., & Erev, I. (2009). The description–experience gap in risky choice. Trends in Cognitive Sciences, 13, 517–523. doi: 10.1016/j.tics.2009.09.004.CrossRefGoogle Scholar
  29. Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction, 7, 174–196.CrossRefGoogle Scholar
  30. Hurley, S. (2001). Perception and action: Alternative views. Synthese, 129, 3–40.CrossRefGoogle Scholar
  31. Hutchins, E. (1995). Cultural cognition. Cognition in the wild (pp. 353–374). Cambridge, Mass: MIT Press.Google Scholar
  32. Hutchins, E. (2001). Cognition, Distributed. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social & behavioral sciences (pp. 2068–2072). Oxford: Pergamon. doi: 10.1016/B0-08-043076-7/01636-3.
  33. Ingold, T. (2010). The textility of making. Cambridge Journal of Economics, 34, 91–102. doi: 10.1093/cje/bep042.CrossRefGoogle Scholar
  34. Inhelder, B., & Piaget, J. (2013). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures. Abington, UK: Routledge (Original work published 1958).Google Scholar
  35. Kahneman, D. (2012). Thinking, fast and slow. London: Penguin Books.Google Scholar
  36. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.CrossRefzbMATHGoogle Scholar
  37. Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 66–71. doi: 10.1037/0033-2909.131.1.66.CrossRefGoogle Scholar
  38. Kirsh, D. (2010). Thinking with external representations. AI & Society, 25, 441–454. doi: 10.1007/s00146-010-0272-8.CrossRefGoogle Scholar
  39. Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18, 513–549.CrossRefGoogle Scholar
  40. Knappett, C. (2005). Thinking through material culture: An interdisciplinary perspective. Philadelphia: University of Pennsylvania Press.CrossRefGoogle Scholar
  41. Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139, 665–682. doi: 10.1037/a0020198.CrossRefGoogle Scholar
  42. Maglio, P., Matlock, T., Raphaely, D., Chernicky, B., & Kirsh, D. (1999). Interactive skill in scrabble. In Proceedings of the Twenty-First Annual Conference of the Cognitive Science Society (pp. 326–330).Google Scholar
  43. Malafouris, L. (2013). How things shape the mind: A theory of material engagement. Cambridge, Massachusetts: MIT Press.Google Scholar
  44. Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15, 238–246. doi: 10.3758/BF03197722.CrossRefGoogle Scholar
  45. Miller, G. A. (2003). The cognitive revolution: a historical perspective. Trends in Cognitive Sciences, 7, 141–144. doi: 10.1016/S1364-6613(03)00029-9.CrossRefGoogle Scholar
  46. Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130, 621–640. doi: 10.1037/0096-3445.130.4.621.CrossRefGoogle Scholar
  47. Norman, J. (2002). Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and Brain Sciences, 25(01), 73–96.Google Scholar
  48. Norman, D. A. (2013). The design of everyday things (2nd ed.). New York: Basic Books.Google Scholar
  49. Novack, M., & Goldin-Meadow, S. (2015). Learning from gesture: How our hands change our minds. Educational Psychology Review, 27, 405–412. doi: 10.1007/s10648-015-9325-3.CrossRefGoogle Scholar
  50. Ohlsson, S. (2011). Deep learning: How the mind overrides experience. Cambridge; New York: Cambridge University Press.CrossRefGoogle Scholar
  51. Rauscher, F. H., Krauss, R. M., & Chen, Y. (1996). Gesture, speech, and lexical access: The role of lexical movements in speech production. Psychological Science, 7, 226–231. doi: 10.1111/j.1467-9280.1996.tb00364.x.CrossRefGoogle Scholar
  52. Salamé, P., & Baddeley, A. (1986). Phonological factors in STM: Similarity and the unattended speech effect. Bulletin of the Psychonomic Society, 24, 263–265.CrossRefGoogle Scholar
  53. Shapiro, L. (2011). Embodied cognition. New York: Routledge.Google Scholar
  54. Skinner, B. F. (1935). Two types of conditioned reflex and a pseudo type. The Journal of General Psychology, 12, 66–77. doi: 10.1080/00221309.1935.9920088.CrossRefGoogle Scholar
  55. Stanovich, K. E., & West, R. F. (1999). Discrepancies between normative and descriptive models of decision making and the understanding/acceptance principle. Cognitive Psychology, 38, 349–385. doi: 10.1006/cogp.1998.0700.CrossRefGoogle Scholar
  56. Senge, P. (1991). The art and practice of the fifth discipline. London: Century.Google Scholar
  57. Steffensen, S. V. (2013). Human interactivity: Problem-solving, solution-probing and verbal patterns in the wild. In S. Cowley & F. Vallée-Tourangeau (Eds.), Cognition beyond the brain: Computation, interactivity and human artifice (pp. 195–221). Dordrecht: Springer.Google Scholar
  58. Steffensen, S. V., Vallée-Tourangeau, F., & Vallée-Tourangeau, G. (2016). Cognitive events in a problem-solving task: a qualitative method for investigating interactivity in the 17 Animals problem. Journal of Cognitive Psychology, 28, 79–105. doi: 10.1080/20445911.2015.1095193.CrossRefGoogle Scholar
  59. Tolman, E. C. (1932). Purposive behavior in animals and men. New York: Century.Google Scholar
  60. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.CrossRefGoogle Scholar
  61. Vallée-Tourangeau, F. (2013). Interactivity, efficiency, and individual differences in mental arithmetic. Experimental Psychology, 60, 302–311. doi: 10.1027/1618-3169/a000200.CrossRefGoogle Scholar
  62. Vallée-Tourangeau, F. (2014). Insight, interactivity and materiality. Pragmatics & Cognition, 22(1), 27–44. doi: 10.1075/pc.22.1.02val.Google Scholar
  63. Vallée-Tourangeau, F., Sirota, M., & Vallée-Tourangeau, G. (2016). Interactivity mitigates the impact of working memory depletion on mental arithmetic performance. Cognitive Research: Principles and Implications, 1, 26. doi: 10.1186/s41235-016-0027-2.
  64. Vallée-Tourangeau, F., Steffensen, S, V., Vallée-Tourangeau, G., & Makri, A. (2015a). Insight and cognitive ecosystems. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (pp. 2457–2462). Austin, TX: Cognitive Science Society.Google Scholar
  65. Vallée-Tourangeau, G., Abadie, M., & Vallée-Tourangeau, F. (2015b). Interactivity fosters Bayesian reasoning without instruction. Journal of Experimental Psychology: General, 144, 581–603. doi: 10.1037/a0039161.CrossRefGoogle Scholar
  66. Vallée-Tourangeau, F., Steffensen, S. V., Vallée-Tourangeau, G., & Sirota, M. (2016). Insight with hands and things. Acta Psychologica, 170, 195–205. doi: 10.1016/j.actpsy.2016.08.006
  67. Vallée-Tourangeau, F., & Wrightman, M. (2010). Interactive skills and individual differences in a word production task. AI & Society, 25, 433–439. doi: 10.1007/s00146-010-0270-x.CrossRefGoogle Scholar
  68. Vallée-Tourangeau, G., & Vallée-Tourangeau, F. (2014). The spatio-temporal dynamics of systemic thinking. Cybernetics & Human Knowing, 21, 113–127.Google Scholar
  69. Wagenaar, W. A., Keren, G., & Lichtenstein, S. (1988). Islanders and hostages: Deep and surface structures of decision problems. Acta Psychologica, 67, 175–189. doi: 10.1016/0001-6918(88)90012-1.CrossRefGoogle Scholar
  70. Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20, 158. doi: 10.1037/h0074428.CrossRefGoogle Scholar
  71. Weber, M. (1978). Economy and society: An outline of interpretive sociology. Berkeley: University of California Press (Original work published 1922).Google Scholar
  72. Weisberg, R. W. (2015). Toward an integrated theory of insight in problem solving. Thinking & Reasoning, 21, 5–39. doi: 10.1080/13546783.2014.886625.CrossRefGoogle Scholar
  73. Weller, A., Villejoubert, G., & Vallée-Tourangeau, F. (2011). Interactive insight problem solving. Thinking & Reasoning, 17, 424–439. doi: 10.1080/13546783.2011.629081.CrossRefGoogle Scholar
  74. Wickens, C. D., & Carswell, C. M. (2012). Information processing. In G. Salvendi (Ed.), Handbook of human factors and ergonomics (4th ed., pp. 117–161). New York: Wiley.CrossRefGoogle Scholar
  75. Wilson, A. D., & Golonka, S. (2013). Embodied cognition is not what you think it is. Frontiers in Psychology, 4. doi: 10.3389/fpsyg.2013.00058.
  76. Wynn, T., & Coolidge, F. L. (2014). Technical cognition, working memory and creativity. Pragmatics & Cognition, 22, 45–63. doi: 10.1075/pc.22.1.03wyn.Google Scholar
  77. Withagen, R., & Chemero, A. (2012). Affordances and classification: On the significance of a sidebar in James Gibson’s last book. Philosophical Psychology, 25, 521–537. doi: 10.1080/09515089.2011.579424.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ManagementKingston Business School, Kingston UniversityKingstonUK
  2. 2.Department of PsychologySchool of Social and Behavioural Sciences, Kingston UniversityKingstonUK

Personalised recommendations