Advertisement

Exact Graph Edit Distance Computation Using a Binary Linear Program

  • Julien Lerouge
  • Zeina Abu-Aisheh
  • Romain Raveaux
  • Pierre Héroux
  • Sébastien AdamEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10029)

Abstract

This paper presents a binary linear program which computes the exact graph edit distance between two richly attributed graphs (i.e. with attributes on both vertices and edges). Without solving graph edit distance for large graphs, the proposed program enables to process richer and larger graphs than existing approaches based on mathematical programming and the \(A^*\) algorithm. Experiments are led on 7 standard graph datasets and the proposed approach is compared with two state-of-the-art algorithms.

Keywords

Graph edit distance Binary linear program 

References

  1. 1.
    Fankhauser, S., Riesen, K., Bunke, H., Dickinson, P.J.: Suboptimal graph isomorphism using bipartite matching. IJPRAI 26(6), 1250013 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Fischer, A., Bunke, H.: Character prototype selection for handwriting recognition in historical documents. In: 2011 19th European Signal Processing Conference, pp. 1435–1439, August 2011Google Scholar
  3. 3.
    Fischer, A., Plamondon, R., Savaria, Y., Riesen, K., Bunke, H.: A hausdorff heuristic for efficient computation of graph edit distance. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 83–92. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44415-3_9 Google Scholar
  4. 4.
    Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph edit distance based on Hausdorff matching. Pattern Recogn. 48(2), 331–343 (2015)CrossRefGoogle Scholar
  5. 5.
    Gaüzère, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics. Pattern Recogn. Lett. 33(15), 2038–2047 (2012). http://www.sciencedirect.com/science/article/pii/S016786551200102X, Graph-Based Representations in Pattern RecognitionCrossRefGoogle Scholar
  6. 6.
    Hammami, M., Héroux, P., Adam, S., d’Andecy, V.P.: One-shot field spotting on colored forms using subgraph isomorphism. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 586–590, August 2015Google Scholar
  7. 7.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  8. 8.
    Héroux, P., Bodic, P., Adam, S.: Datasets for the evaluation of substitution-tolerant subgraph isomorphism. In: Lamiroy, B., Ogier, J.-M. (eds.) GREC 2013. LNCS, vol. 8746, pp. 240–251. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44854-0_19 Google Scholar
  9. 9.
    Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)CrossRefGoogle Scholar
  10. 10.
    Kostakis, O.: Classy: fast clustering streams of call-graphs. Data Min. Knowl. Discov. 28(5), 1554–1585 (2014). doi: 10.1007/s10618-014-0367-9 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Le Bodic, P., Héroux, P., Adam, S., Lecourtier, Y.: An integer linear program for substitution-tolerant subgraph isomorphism and its use for symbol spotting in technical drawings. Pattern Recogn. 45(12), 4214–4224 (2012)CrossRefGoogle Scholar
  12. 12.
    Lerouge, J., Hammami, M., Héroux, P., Adam, S.: Minimum cost subgraph matching using a binary linear program. Pattern Recogn. Lett. 71, 45–51 (2016)CrossRefGoogle Scholar
  13. 13.
    Lerouge, J., Bodic, P., Héroux, P., Adam, S.: GEM++: a tool for solving substitution-tolerant subgraph isomorphism. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 128–137. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-18224-7_13 Google Scholar
  14. 14.
    Myers, R., Wilson, R.C., Hancock, E.R.: Bayesian graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 628–635 (2000)CrossRefGoogle Scholar
  15. 15.
    Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg (2006). doi: 10.1007/11815921_17 CrossRefGoogle Scholar
  16. 16.
    Raveaux, R., Burie, J.C., Ogier, J.M.: A graph matching method and a graph matching distance based on subgraph assignments. Pattern Recogn. Lett. 31(5), 394–406 (2010)CrossRefGoogle Scholar
  17. 17.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)CrossRefGoogle Scholar
  19. 19.
    Riesen, K., Bunke, H.: Graph Classification and Clustering Based on Vector Space Embedding. World Scientific Publishing Co. Inc., River Edge (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using various search strategies. Pattern Recogn. 48(4), 1349–1363 (2015)CrossRefGoogle Scholar
  21. 21.
    Riesen, K., Fankhauser, S., Bunke, H.: Speeding up graph edit distance computation with a bipartite heuristic. In: Frasconi, P., Kersting, K., Tsuda, K. (eds.) Mining and Learning with Graphs, MLG 2007, Firence, Italy, 1–3 August 2007, Proceedings (2007)Google Scholar
  22. 22.
    Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endowment. 2, 25–36 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Julien Lerouge
    • 1
  • Zeina Abu-Aisheh
    • 2
  • Romain Raveaux
    • 2
  • Pierre Héroux
    • 1
  • Sébastien Adam
    • 1
    Email author
  1. 1.Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITISRouenFrance
  2. 2.LI ToursToursFrance

Personalised recommendations