Where Does My Brand End? An Overlapping Community Approach

  • Ademir C. Gabardo
  • Regina Berretta
  • Natalie J. de Vries
  • Pablo Moscato
Conference paper
Part of the Proceedings in Adaptation, Learning and Optimization book series (PALO, volume 8)


In this paper, we present a new Memetic Algorithm for overlapping community detection. We use a link-based clustering approach to detect the communities of edges in complex networks. To assess the quality of our method, we present experimental results for benchmark networks in comparison to other state-of-the-art algorithms. In addition, we present a case study of a co-purchasing product network from a brand-centric point of view to show the real-life utility of this new Memetic Algorithm.


Evolutionary computation Memetic algorithms Metaheuristics Complex networks Overlapping community detection 


  1. 1.
    Aaker, J.L.: Dimensions of brand personality. Journal of Marketing Research 34(3), 347–356 (1997), http://www.jstor.org/stable/3151897
  2. 2.
    Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election: divided they blog. In: Proceedings of the 3rd international workshop on Link discovery. pp. 36–43. ACM (2005)Google Scholar
  3. 3.
    Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)Google Scholar
  4. 4.
    Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Liberti, L.: Column generation algorithms for exact modularity maximization in networks. Physical Review E 82(4), 046112 (2010)Google Scholar
  5. 5.
    Barabási, A.L., Frangos, J.: Linked: the new science of networks science of networks. Basic Books (2014)Google Scholar
  6. 6.
    Bayer, B.E.: Color imaging array (Jul 20 1976), uS Patent 3,971,065Google Scholar
  7. 7.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics reports 424(4), 175–308 (2006)Google Scholar
  8. 8.
    de Vries, N.J., Carlson, J., Moscato, P.: A data-driven approach to reverse engineering customer engagement models: Towards functional constructs. PloS one 9(7), e102768 (2014)Google Scholar
  9. 9.
    Evans, T.: Information on Les Miserables network used in Evans and Lambiotte 2010. FigShare (10 2015), http://dx.doi.org/10.6084/m9.figshare.1573032
  10. 10.
    Evans, T., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Physical Review E 80(1), 016105 (2009)Google Scholar
  11. 11.
    Fortunato, S.: Community detection in graphs. Physics reports 486(3), 75–174 (2010)Google Scholar
  12. 12.
    Gabardo, A.C., Lopes, H.S.: Using social network analysis to unveil cartels in public bids. In: Network Intelligence Conference (ENIC), 2014 European. pp. 17–21. IEEE (2014)Google Scholar
  13. 13.
    Gach, O., Hao, J.K.: A memetic algorithm for community detection in complex networks. In: Parallel Problem Solving from Nature-PPSN XII, pp. 327–336. Springer (2012)Google Scholar
  14. 14.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine learning 3(2), 95–99 (1988)Google Scholar
  15. 15.
    Gomez Ravetti, M., Rosso, O.A., Berretta, R., Moscato, P.: Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus? gene expression profiles in alzheimer’s disease. PloS one 5(4), e10153 (2010)Google Scholar
  16. 16.
    He, D., Jin, D., Chen, Z., Zhang, W.: Identification of hybrid node and link communities in complex networks. Scientific reports 5 (2015)Google Scholar
  17. 17.
    Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press (1992)Google Scholar
  18. 18.
    Jebabli, M., Cherifi, H., Cherifi, C., Hamouda, A.: Overlapping community detection versus ground-truth in AMAZON co-purchasing network. In: Yétongnon, K., Dipanda, A. (eds.) 11th International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2015, Bangkok, Thailand, November 23-27, 2015. pp. 328–336. IEEE Computer Society (2015), http://dx.doi.org/10.1109/SITIS.2015.47
  19. 19.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11(3), 033015 (2009)Google Scholar
  20. 20.
    Larish, J.J.: Out of Focus: The story of how Kodak lost its direction. CreateSpace Independent Publishing Platform, Luxembourg (2012)Google Scholar
  21. 21.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6(1), 29–123 (2009)Google Scholar
  22. 22.
    Ma, L., Gong, M., Liu, J., Cai, Q., Jiao, L.: Multi-level learning based memetic algorithm for community detection. Applied Soft Computing 19, 121–133 (2014)Google Scholar
  23. 23.
    McAuley, J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and complementary products. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 785–794. ACM (2015)Google Scholar
  24. 24.
    McAuley, J., Yang, A.: Addressing complex and subjective product-related queries with customer reviews. arXiv preprint arXiv:1512.06863 (2015)
  25. 25.
    Moscato, P., Cotta, C.: A modern introduction to memetic algorithms. In: Handbook of Metaheuristics, pp. 141–183. Springer (2010)Google Scholar
  26. 26.
    Naeni, L.M., Berretta, R., Moscato, P.: Ma-net: A reliable memetic algorithm for community detection by modularity optimization. In: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. pp. 311–323. Springer (2015)Google Scholar
  27. 27.
    Naeni, L.M., De Vries, N.J., Reis, R., Arefin, A.S., Berretta, R., Moscato, P.: Identifying communities of trust and confidence in the charity and not-for-profit sector: A memetic algorithm approach. In: Big Data and Cloud Computing (BdCloud), 2014 IEEE Fourth International Conference on. pp. 500–507. IEEE (2014)Google Scholar
  28. 28.
    Neri, F., Cotta, C., Moscato, P.: Handbook of memetic algorithms, vol. 379. Springer (2012)Google Scholar
  29. 29.
    Newman, M., Barabasi, A.L., Watts, D.J.: The structure and dynamics of networks. Princeton University Press (2006)Google Scholar
  30. 30.
    Newman, M.E.: The structure and function of complex networks. SIAM review 45(2), 167–256 (2003)Google Scholar
  31. 31.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)Google Scholar
  32. 32.
    Pastor-Satorras, R., Vespignani, A.: Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press (2007)Google Scholar
  33. 33.
    Pizzuti, C.: Overlapped community detection in complex networks. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation. pp. 859–866. ACM (2009)Google Scholar
  34. 34.
    Rees, B.S., Gallagher, K.B.: Overlapping community detection by collective friendship group inference. In: Advances in Social Networks Analysis and Mining (ASONAM), 2010 International Conference on. pp. 375–379. IEEE (2010)Google Scholar
  35. 35.
    Solé, R.V., Pastor-Satorras, R.: 7 complex networks in genomics and proteomics. Handbook of graphs and networks: From the genome to the internet (2006)Google Scholar
  36. 36.
    Srivastava, A.: Motif analysis in the amazon product co-purchasing network. CoRR abs/1012.4050 (2010), http://arxiv.org/abs/1012.4050
  37. 37.
    Swasy, A.: Changing Focus: Kodak and the Battle to Save a Great American Company. Times Business, New York, NY (1997)Google Scholar
  38. 38.
    Yamazaki, T., Shimizu, N., Kobayashi, H., Yamauchi, S.: Weighted micro-clustering: Application to community detection in large-scale co-purchasing networks with user attributes. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y. (eds.) Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Companion Volume. pp. 131–132. ACM (2016), http://doi.acm.org/10.1145/2872518.2889406

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ademir C. Gabardo
    • 1
  • Regina Berretta
    • 1
  • Natalie J. de Vries
    • 1
  • Pablo Moscato
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceThe University of NewcastleNewcastleAustralia

Personalised recommendations