Evolutionary Discovery of Multi-relational Association Rules from Ontological Knowledge Bases

  • Claudia d’Amato
  • Andrea G. B. Tettamanzi
  • Tran Duc Minh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)

Abstract

In the Semantic Web, OWL ontologies play the key role of domain conceptualizations, while the corresponding assertional knowledge is given by the heterogeneous Web resources referring to them. However, being strongly decoupled, ontologies and assertional knowledge can be out of sync. In particular, an ontology may be incomplete, noisy, and sometimes inconsistent with the actual usage of its conceptual vocabulary in the assertions. Despite of such problematic situations, we aim at discovering hidden knowledge patterns from ontological knowledge bases, in the form of multi-relational association rules, by exploiting the evidence coming from the (evolving) assertional data. The final goal is to make use of such patterns for (semi-)automatically enriching/completing existing ontologies. An evolutionary search method applied to populated ontological knowledge bases is proposed for the purpose. The method is able to mine intensional and assertional knowledge by exploiting problem-aware genetic operators, echoing the refinement operators of inductive logic programming, and by taking intensional knowledge into account, which allows to restrict the search space and direct the evolutionary process. The discovered rules are represented in SWRL, so that they can be straightforwardly integrated within the ontology, thus enriching its expressive power and augmenting the assertional knowledge that can be derived from it. Discovered rules may also suggest new (schema) axioms to be added to the ontology. We performed experiments on publicly available ontologies, validating the performances of our approach and comparing them with the main state-of-the-art systems.

Keywords

Description logics Pattern discovery Evolutionary algorithms 

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proceedings of the International Conference on Management of Data, pp. 207–216. ACM Press (1993)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Univ. Press, Cambridge (2003)MATHGoogle Scholar
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 28–37 (2001)Google Scholar
  4. 4.
    d’Amato, C., Staab, S., Tettamanzi, A., Tran, M., Gandon, F.: Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In: Proceedings of SAC 2016. ACM (2016)Google Scholar
  5. 5.
    DeJong, K.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2002)Google Scholar
  6. 6.
    Divina, F.: Hybrid genetic relational search for inductive learning. Ph.D. thesis, Vrije Universiteit Amsterdam (2004)Google Scholar
  7. 7.
    Divina, F.: Genetic Relational Search for Inductive Concept Learning: A Memetic. LAP LAMBERT Academic Publishing, Saarbrücken (2010)Google Scholar
  8. 8.
    Divina, F., Marchiori, E.: Evolutionary concept learning. In: Langdon, W.B. et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, USA, 9–13 July 2002, pp. 343–350. Morgan Kaufmann (2002)Google Scholar
  9. 9.
    Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Fanizzi, N., d’Amato, C., Esposito, F.: Learning with kernels in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 210–225. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of the 22th International Conference on World Wide Web (WWW 2013), pp. 413–422. ACM (2013)Google Scholar
  12. 12.
    Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)CrossRefGoogle Scholar
  13. 13.
    Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In: Proceedings of the International Conference on World Wide Web, pp. 723–731. ACM (2004)Google Scholar
  14. 14.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML (2004). https://www.w3.org/Submission/SWRL/
  15. 15.
    Józefowska, J., Lawrynowicz, A., Lukaszewski, T.: The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. Theor. Pract. Logic Program. 10(3), 251–289 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lisi, F.A.: AL-QuIn: an onto-relational learning system for semantic web mining. Int. J. Semant. Web Inf. Syst. 7(3), 1–22 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web Semant. 3(1), 41–60 (2005)CrossRefGoogle Scholar
  18. 18.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36, 165–228 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Muggleton, S., Tamaddoni-Nezhad, A.: QG/GA: a stochastic search for progol. Mach. Learn. 70(2–3), 121–133 (2008)CrossRefGoogle Scholar
  20. 20.
    Mühlenbein, H., Schlierkamp-Voosen, D.: The science of breeding, its application to the breeder genetic algorithm (BGA). Evol. Comput. 1(4), 335–360 (1993). WinterCrossRefGoogle Scholar
  21. 21.
    Reiser, P.G.K., Riddle, P.J.: Scaling up inductive logic programming: an evolutionary wrapper approach. Appl. Intell. 15(3), 181–197 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant. 5(2), 51–53 (2007)CrossRefGoogle Scholar
  23. 23.
    Tamaddoni-Nezhad, A., Muggleton, S.H.: A genetic algorithms approach to ILP. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 285–300. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Claudia d’Amato
    • 1
  • Andrea G. B. Tettamanzi
    • 2
  • Tran Duc Minh
    • 2
  1. 1.University of BariBariItaly
  2. 2.Université Côte d’Azur, Inria, CNRS, I3SNiceFrance

Personalised recommendations