Leveraging the Impact of Ontology Evolution on Semantic Annotations

  • Silvio Domingos CardosoEmail author
  • Cédric Pruski
  • Marcos Da Silveira
  • Ying-Chi Lin
  • Anika Groß
  • Erhard Rahm
  • Chantal Reynaud-Delaître
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)


This paper deals with the problem of maintenance of semantic annotations produced based on domain ontologies. Many annotated texts have been produced and made available to end-users. If not reviewed regularly, the quality of these annotations tends to decrease over time due to the evolution of the domain ontologies. The quality of these annotations is critical for tools that exploit them (e.g., search engines and decision support systems) and need to ensure an acceptable level of performance. Although the recent advances for ontology-based annotation systems to annotate new documents, the maintenance of existing annotations remains under studied. In this work we present an analysis of the impact of ontology evolution on existing annotations. To do so, we used two well-known annotators to generate more than 66 million annotations from a pre-selected set of 5000 biomedical journal articles and standard ontologies covering a period ranging from 2004 to 2016. We highlight the correlation between changes in the ontologies and changes in the annotations and we discuss the necessity to improve existing annotation formalisms in order to include elements required to support (semi-) automatic annotation maintenance mechanisms.


Ontology evolution Semantic annotations Life sciences 



This work is supported by the National Research Fund (FNR) of Luxembourg and Deutsche Forschungsgemeinschaft (DFG) under the ELISA research project.


  1. 1.
    Hodge, G.: Systems of Knowledge Organization for Digital Libraries: Beyond Traditional Authority Files. ERIC, Washington (2000)Google Scholar
  2. 2.
    Comeau, D., Doan, R., Ciccarese, P., Cohen, K., Krallinger, M., Leitner, F., Lu, Z., Peng, Y., Rinaldi, F., Torii, M., Valencia, A., Verspoor, K., Wiegers, T., Wu, C., Wilbur, W.: BioC: a minimalist approach to interoperability for biomedical text processing. Database: J. Biol. Databases Curation 2013, bat064 (2013)CrossRefGoogle Scholar
  3. 3.
    Dos Reis, J.C., Pruski, C., Da Silveira, M., Reynaud-Delaître, C.: Understanding semantic mapping evolution by observing changes in biomedical ontologies. J. Biomed. Inf. 47, 71–82 (2014)CrossRefGoogle Scholar
  4. 4.
    Hartung, M., Kirsten, T., Gross, A., Rahm, E.: OnEX: exploring changes in life science ontologies. BMC Bioinform. 10(1), 1 (2009)CrossRefGoogle Scholar
  5. 5.
    Oren, E., Möller, K., Scerri, S., Handschuh, S., Sintek, M.: What are semantic annotations? Relatório técnico. DERI Galway 9, 62 (2006)Google Scholar
  6. 6.
    Luong, P.H., Dieng-Kuntz, R.: A rule-based approach for semantic annotation evolution in the coswem system. In: Kon, M., Lemire, D. (eds.) Canadian Semantic Web. Semantic Web and Beyond, vol. 2, pp. 103–120. Springer US, New York (2006)CrossRefGoogle Scholar
  7. 7.
    Gross, A., Hartung, M., Kirsten, T., Rahm, E.: Estimating the quality of ontology-based annotations by considering evolutionary changes. In: Paton, N.W., Missier, P., Hedeler, C. (eds.) DILS 2009. LNCS, vol. 5647, pp. 71–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Hartung, M., Kirsten, T., Rahm, E.: Analyzing the evolution of life science ontologies and mappings. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008. LNCS (LNBI), vol. 5109, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Da Silveira, M., Dos Reis, J.C., Pruski, C.: Management of dynamic biomedical terminologies: current status and future challenges. Yearb. Med. Inf. 10(1), 125–133 (2015)CrossRefGoogle Scholar
  10. 10.
    Traverso-Ribón, I., Vidal, M.-E., Palma, G.: AnnEvol: an evolutionary framework to description ontology-based annotations. In: Ashish, N., Ambite, J.-L. (eds.) DILS 2015. LNCS, vol. 9162, pp. 87–103. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  11. 11.
    Groß, A., Hartung, M., Prfer, K., Kelso, J., Rahm, E.: Impact of ontology evolution on functional analyses. Bioinformatics 28(20), 2671–2677 (2012)CrossRefGoogle Scholar
  12. 12.
    Frost, H.R., Moore, J.H.: Optimization of gene set annotations via entropy minimization over variable clusters (EMVC). Bioinformatics (Oxf. Engl.) 30(12), 1698–1706 (2014)CrossRefGoogle Scholar
  13. 13.
    Cunningham, H.: GATE, a general architecture for text engineering. Comput. Humanit. 36(2), 223–254 (2002)CrossRefGoogle Scholar
  14. 14.
    Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C., Tudorache, T., Musen, M.A.: BioPortal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucleic Acids Res. 39(suppl 2), W541–W545 (2011)CrossRefGoogle Scholar
  15. 15.
    Hartung, M., Groß, A., Rahm, E.: COnto-Diff: generation of complex evolution mappings for life science ontologies. J. Biomed. Inf. 46(1), 15–32 (2013)CrossRefGoogle Scholar
  16. 16.
    Doğan, R.I., Leaman, R., Lu, Z.: NCBI disease corpus: a resource for disease name recognition and concept normalization. J. Biomed. Inf. 47, 1–10 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Silvio Domingos Cardoso
    • 1
    • 2
    Email author
  • Cédric Pruski
    • 1
  • Marcos Da Silveira
    • 1
  • Ying-Chi Lin
    • 3
  • Anika Groß
    • 3
  • Erhard Rahm
    • 3
  • Chantal Reynaud-Delaître
    • 2
  1. 1.LIST, Luxembourg Institute of Science and TechnologyEsch-sur-alzetteLuxembourg
  2. 2.LRIUniversity of Paris-Sud XIOrsayFrance
  3. 3.Institute of Computer ScienceUniversität LeipzigLeipzigGermany

Personalised recommendations