Implementation of Turing Machine Using DNA Strand Displacement

  • Wataru YahiroEmail author
  • Masami Hagiya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10071)


The computational capability of biochemical systems is one of the major interest in the area of nanotechnology. Since Bennett proposed his thought experiment of chemical Turing machine using DNA-like molecules, many attempts for DNA Turing machine have been made. However, they are based on some hypothetical assumptions or require laboratory manipulations for each step. Here we propose an implementation of Turing machine by using DNA strand displacement cascades.


Turing Machine Strand Displacement Joint Section Branch Migration Tape Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beaver, D.: A universal molecular computer. DNA Based Comput. 27, 29–36 (1996)Google Scholar
  2. 2.
    Bennett, C.H.: The thermodynamics of computationa review. Int. J. Theor. Phys. 21(12), 905–940 (1982)CrossRefGoogle Scholar
  3. 3.
    Lakin, M.R., Phillips, A.: Modelling, simulating and verifying turing-powerful strand displacement systems. In: Cardelli, L., Shih, W. (eds.) DNA 2011. LNCS, vol. 6937, pp. 130–144. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23638-9_12 CrossRefGoogle Scholar
  4. 4.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18305-8_12 CrossRefGoogle Scholar
  5. 5.
    Rondelez, Y., Tresset, G., Tabata, K.V., Arata, H., Fujita, H., Takeuchi, S., Noji, H.: Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnol. 23(3), 361–365 (2005)CrossRefGoogle Scholar
  6. 6.
    Rothemund, P.W.: A DNA and restriction enzyme implementation of Turing machines. DNA Based Comput. 27, 75–119 (1996)MathSciNetGoogle Scholar
  7. 7.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Comput. 7(4), 615–633 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Academy Sci. 107(12), 5393–5398 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer Science, Graduate School of Information Science and TechnologyUniversity of TokyoHongoJapan

Personalised recommendations