Compositional Parameter Synthesis

  • Lacramioara Aştefănoaei
  • Saddek Bensalem
  • Marius Bozga
  • Chih-Hong Cheng
  • Harald Ruess
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9995)


We address the problem of parameter synthesis for parametric timed systems (PTS). The motivation comes from industrial configuration problems for production lines. Our method consists in compositionally generating over-approximations for the individual components of the input systems, which are translated, together with global properties, to \(\exists \forall \)SMT problems. Our translation forms the basis for optimised and robust parameter synthesis for slightly richer models than PTS.


Global Property Safety Property Reachable State Parameter Synthesis Symbolic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We warmly thank Étienne André for suggesting us the construction of the observer to compute the separations in Sect. 3.


  1. 1.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM, pp. 592–601 (1993)Google Scholar
  2. 2.
    André, É.: IMITATOR II: a tool for solving the good parameters problem in timed automata. In: INFINITY (2010)Google Scholar
  3. 3.
    André, É., Soulat, R.: Synthesis of timing parameters satisfying safety properties. In: Reachability Problems (2011)Google Scholar
  4. 4.
    Aştefănoaei, L., Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Compositional invariant generation for timed systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54862-8_18 CrossRefGoogle Scholar
  5. 5.
    Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification for component-based systems and application. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88387-6_7 CrossRefGoogle Scholar
  6. 6.
    Bjørner, N., Phan, A.-D., Fleckenstein, L.: \({\nu }\)Z - an optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_14 Google Scholar
  7. 7.
    Bruttomesso, R., Carioni, A., Ghilardi, S., Ranise, S.: Automated analysis of parametric timing-based mutual exclusion algorithms. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 279–294. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28891-3_28 CrossRefGoogle Scholar
  8. 8.
    Cheng, C., Guelfirat, T., Messinger, C., Schmitt, J.O., Schnelte, M., Weber, P.: Semantic degrees for industrie 4.0. CoRR, abs/1505.05625 (2015)Google Scholar
  9. 9.
    Cheng, C., Shankar, N., Ruess, H., Bensalem, S.: EFSMT: a logical framework for cyber-physical systems. CoRR, abs/1306.3456 (2013)Google Scholar
  10. 10.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In: FMCAD, pp. 165–168. IEEE (2013)Google Scholar
  11. 11.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Formal Methods Syst. Des. 1, 385 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Damm, W., Ihlemann, C., Sofronie-Stokkermans, V.: Ptime parametric verification of safety properties for reasonable linear hybrid automata. Math. Comput. Sci. 5(4), 469 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dang, T., Dreossi, T., Piazza, C.: Parameter synthesis through temporal logic specifications. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 213–230. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19249-9_14 CrossRefGoogle Scholar
  14. 14.
    Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14295-6_17 CrossRefGoogle Scholar
  15. 15.
    Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic verification of parametric specifications with complex topologies. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16265-7_12 CrossRefGoogle Scholar
  16. 16.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parameter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78929-1_14 CrossRefGoogle Scholar
  18. 18.
    Fribourg, L., Kühne, U.: Parametric verification and test coverage for hybrid automata using the inverse method. Int. J. Found. Comput. Sci. 24, 233 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for a steam boiler. In: FMIA (1995)Google Scholar
  20. 20.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Log. Algebr. Program. 52, 183 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 401–415. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36742-7_28 CrossRefGoogle Scholar
  22. 22.
    Legay, A., Bensalem, S., Boyer, B., Bozga, M.: Incremental generation of linear invariants for component-based systems. In: ACSD (2013)Google Scholar
  23. 23.
    Moura, L., Bjørner, N.: Efficient e-matching for SMT solvers. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73595-3_13 CrossRefGoogle Scholar
  24. 24.
    Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 438–455. Springer, Heidelberg (2002). doi: 10.1007/3-540-45620-1_35 CrossRefGoogle Scholar
  25. 25.
    Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 171–187. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14203-1_15 CrossRefGoogle Scholar
  26. 26.
    Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-like data-structures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 295–307. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27813-9_23 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lacramioara Aştefănoaei
    • 1
  • Saddek Bensalem
    • 2
  • Marius Bozga
    • 2
  • Chih-Hong Cheng
    • 1
  • Harald Ruess
    • 1
  1. 1.fortiss - An-Institut Technische Universität MünchenMunichGermany
  2. 2.Univ. Grenoble Alpes, VERIMAGGrenobleFrance

Personalised recommendations