Local Planning of Multiparty Interactions with Bounded Horizons

  • Mahieddine Dellabani
  • Jacques Combaz
  • Marius Bozga
  • Saddek Bensalem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9995)


Dynamic scheduling of distributed real-time systems with multiparty interactions is acknowledged to be a very hard task. For such systems, multiple schedulers are used to coordinate the parallel activities of remotely running components. In order to ensure global consistency and timing constraints satisfaction, these schedulers must cope with significant communication delays while moreover, use only point-to-point message passing as communication primitive on the platform.

In this paper, we investigate a formal model for such systems as compositions of timed automata subject to multiparty interactions, and we propose a distributed implementation method aiming to overcome the communication delays problem through planning ahead interactions. Moreover, we identify static conditions allowing to make the planning decisions local to different schedulers, and thus to decrease the overall coordination overhead. The method has been implemented and we report preliminary results on benchmarks.


Distributed real-time systems Timed automata Knowledge 


  1. 1.
    Charette, R.N.: This car runs on code. IEEE Spectrum (2009)Google Scholar
  2. 2.
    Kopetz, H.: An integrated architecture for dependable embedded systems. In: Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems, SRDS 2004, pp. 160–161. IEEE Computer Society, Washington, DC (2004)Google Scholar
  3. 3.
    Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time applications. In: EMSOFT (2010)Google Scholar
  4. 4.
    Kopetz, H.: Time-triggered real-time computing. Ann. Rev. Control 27(1), 3–13 (2003)CrossRefGoogle Scholar
  5. 5.
    Chabrol, D., David, V., Aussaguès, C., Louise, S., Daumas, F.: Deterministic distributed safety-critical real-time systems within the oasis approach. In: International Conference on Parallel and Distributed Computing Systems, PDCS, 14–16 November 2005, Phoenix, AZ, USA, pp. 260–268 (2005)Google Scholar
  6. 6.
    Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A.: Event-driven programming with logical execution times. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24743-2_24 CrossRefGoogle Scholar
  7. 7.
    Henzinger, T.A., Kirsch, C.M., Matic, S.: Composable code generation for distributed giotto. In: Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 2005), 15–17 June 2005 Chicago, Illinois, USA, pp. 21–30 (2005)Google Scholar
  8. 8.
    Behrmann, G., David, A., Guldstrand Larsen, K., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: UPPAAL 4.0. In: QEST (2006)Google Scholar
  9. 9.
    Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized distributed real-time systems. In: Proceedings of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS, 3–6 April 2007, Bellevue, Washington, USA, pp. 259–268 (2007)Google Scholar
  10. 10.
    Bagrodia, R.: Process synchronization: design and performance evaluation of distributed algorithms. IEEE Trans. Softw. Eng. 15(9), 1053–1065 (1989)CrossRefGoogle Scholar
  11. 11.
    Bagrodia, R.: A distributed algorithm to implement n-party rendevouz. In: Proceedings Foundations of Software Technology and Theoretical Computer Science, Seventh Conference, Pune, India, 17–19 December 1987, pp. 138–152 (1987)Google Scholar
  12. 12.
    Mani Chandy, K., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley Longman Publishing Co., Inc., Boston (1988)zbMATHGoogle Scholar
  13. 13.
    Mani Chandy, K., Misra, J.: The drinking philosopher’s problem. ACM Trans. Program. Lang. Syst. 6(4), 632–646 (1984)CrossRefGoogle Scholar
  14. 14.
    Pérez, J.A., Corchuelo, R., Ruiz, D., Toro, M.: An order-based, distributed algorithm for implementing multiparty interactions. In: Arbab, F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp. 250–257. Springer, Heidelberg (2002). doi: 10.1007/3-540-46000-4_24 CrossRefGoogle Scholar
  15. 15.
    Parrow, J., Sjödin, P.: Multiway synchronizaton verified with coupled simulation. In: Proceedings of CONCUR ’92, Third International Conference on Concurrency Theory, 24–27 August 1992, Stony Brook, NY, USA, pp. 518–533 (1992)Google Scholar
  16. 16.
    Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge based controlling of distributed systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 52–66. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15643-4_6 CrossRefGoogle Scholar
  17. 17.
    Bensalem, S., Bozga, M., Quilbeuf, J., Sifakis, J.: Knowledge-based distributed conflict resolution for multiparty interactions and priorities. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 118–134. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30793-5_8 CrossRefGoogle Scholar
  18. 18.
    Bensalem, S., Bozga, M., Combaz, J., Triki, A.: Rigorous system design flow for autonomous systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 184–198. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45234-9_13 Google Scholar
  19. 19.
    Triki, A.: Distributed Implementation of Timed Component-based Systems. Ph.D. thesis, UJF (2015)Google Scholar
  20. 20.
    Saddek Bensalem Marius Bozga Mahieddine Dellabani, Jacques Combaz. Local planning of multiparty interactions with bounded horizon. Technical Report TR-2016-05, Verimag Research Report, 2016Google Scholar
  21. 21.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tripakis, S.: The analysis of timed systems in practice. Ph.D. thesis, Joseph Fourier University (1998)Google Scholar
  23. 23.
    Bengtsson, J., Yi, W.: On clock difference constraints and termination in reachability analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39893-6_28 CrossRefGoogle Scholar
  24. 24.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 11, 193–244 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Aştefănoaei, L., Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Compositional invariant generation for timed systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54862-8_18 CrossRefGoogle Scholar
  26. 26.
    Ben Rayana, S., Astefanoaei, L., Bensalem, S., Bozga, M., Combaz, J.: Compositional verification for timed systems based on automatic invariant generation. CoRR, abs/1506.04879 (2015)Google Scholar
  27. 27.
    Bensalem, M.B.S., Boyer, B., Legay, A.: Compositional invariant generation for timed systems. Technical report TR-2012-15, Verimag Research Report (2012)Google Scholar
  28. 28.
    Bensalem, S., Bozga, M., Boyer, B., Legay, A.: Incremental generation of linear invariants for component-based systems. In: 13th International Conference on Application of Concurrency to System Design (ACSD), pp. 80–89, July 2013Google Scholar
  29. 29.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  30. 30.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in bip. In: Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods, SEFM 2006, Washington, DC, USA, pp. 3–12, IEEE Computer Society (2006)Google Scholar
  31. 31.
    Dutertre, B., de Moura, L.: The yices SMT solver. Technical report, SRI International (2006)Google Scholar
  32. 32.
    Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28756-5_14 CrossRefGoogle Scholar
  33. 33.
    Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5(1), 1–11 (1987)CrossRefGoogle Scholar
  34. 34.
    Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gearbox controller. Springer Int. J. Softw. Tools Technol. Transf. (STTT) 3(3), 353–368 (2001)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.University Grenoble Alpes, VERIMAGGrenobleFrance
  2. 2.CNRS, VERIMAGGrenobleFrance

Personalised recommendations