Advertisement

Automated Processing of Micro-CT Scans Using Descriptor-Based Registration of 3D Images

  • Jakub Kamiński
  • Barłomiej Trzewiczek
  • Sebastian Wroński
  • Jacek Tarasiuk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 539)

Abstract

Under the study, 6 bovine femur heads and overall number of 70 dissected cuboid specimens of cancellous bone were intended for micro-CT. Descriptor-based approach was used for 3D images registration from different resolutions using translation and rotation invariant local geometric descriptors based on 3D Laplace filter and nearest neighbours identification using 6-dimensional scalar vectors. Presented approach is simple and effective and can be processed using macros for ImageJ tool. Obtained accuracy of registration with error lower than 1 pixel allows for further analysis of bone mechanical properties, enabling precise determination of orientation for anisotropy and therefore the study of behaviour of the bone under load.

Keywords

Micro-ct Image processing Volumes registration Bones 

Notes

Acknowledgments

J. Kamiński. acknowledges benefit from Ph.D. scholarship by Marian Smoluchowski Cracow Scientific Consortium – KNOW.

References

  1. 1.
    Wiles, A., Likholyot, A., Frantz, D., Peters, T.: A statistical model for point-based target registration error with anisotropic fiducial localizer error. IEEE Trans. Med. imaging 27, 378–390 (2008)CrossRefGoogle Scholar
  2. 2.
    Fitzpatrick, J.M., West, J.B.: The distribution of target registration error in rigid-body point-based registration. IEEE Trans. Med. Imaging 20, 917–927 (2001)CrossRefGoogle Scholar
  3. 3.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  4. 4.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Kuipers, B., Byun, Y.T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. J. Robot. Auton. Syst. 8, 47–63 (1991)CrossRefGoogle Scholar
  6. 6.
    Preibisch, S., Saalfeld, S., Schindelin, J., Tomancak, P.: Software for bead-based registration of selective plane illumination microscopy data. Nat. Meth. 7(6), 418–419 (2010)CrossRefGoogle Scholar
  7. 7.
    Stock, S.R.: MicroComputed Tomography: Methodology and Applications. CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  8. 8.
    Fischler, M.A., Bolles, R.C.: Random sample consensus. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Abramoff, M.D., Magalhaes, P.J., Ram, S.J.: Image processing with ImageJ. Biophotonics Int. 11(7), 36–42 (2004)Google Scholar
  10. 10.
    Doube, M., et al.: BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010)CrossRefGoogle Scholar
  11. 11.
    Niblack, W.: An introduction to Digital Image Processing. Prentice-Hall, Englewood Cliffs (1986)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jakub Kamiński
    • 1
  • Barłomiej Trzewiczek
    • 1
  • Sebastian Wroński
    • 1
  • Jacek Tarasiuk
    • 1
  1. 1.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakowPoland

Personalised recommendations