Advertisement

A Relational Event Approach to Modeling Behavioral Dynamics

  • Carter T. ButtsEmail author
  • Christopher Steven Marcum
Chapter
Part of the Computational Social Sciences book series (CSS)

Abstract

This chapter provides an introduction to the analysis of relational event data (i.e., actions, interactions, or other events involving multiple actors that occur over time) within the R/statnet platform. We begin by reviewing the basics of relational event modeling, with an emphasis on models with piecewise constant hazards. We then discuss estimation for dyadic and more general relational event models using the relevent package, with an emphasis on hands-on applications of the methods and interpretation of results. Statnet is a collection of packages for the R statistical computing system that supports the representation, manipulation, visualization, modeling, simulation, and analysis of relational data. Statnet packages are contributed by a team of volunteer developers, and are made freely available under the GNU Public License. These packages are written for the R statistical computing environment, and can be used with any computing platform that supports R (including Windows, Linux, and Mac).

Keywords

Relational Event Bayesian Information Criterion Preferential Attachment Radio Communication World Trade Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Almquist, Z. W., & Butts, C. T. (2014). Logistic network regression for scalable analysis of networks with joint edge/vertex dynamics. Sociological Methodology, 44(1), 273–321.CrossRefGoogle Scholar
  2. Bender-deMoll, S., & McFarland, D. (2006). The art and science of dynamic network visualization. Journal of Social Structure, 7(2).Google Scholar
  3. Blossfeld, H. P., & Rohwer, G. (1995). Techniques of Event History Modeling: New Approaches to Causal Analysis. Lawrence Erlbaum and Associates, Mahwah, NJ.Google Scholar
  4. Burt, R. S. (1992). Structural holes: The social structure of competition. Cambridge, MA: Harvard University Press.Google Scholar
  5. Butts, C. T. (2008). A relational event framework for social action. Sociological Methodology, 38(1), 155–200.CrossRefGoogle Scholar
  6. Butts, C. T. (2009). Revisiting the foundations of network analysis. Science, 325, 414–416.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Butts, C. T. (2010). Relevent: Relational event models. R package version 1.0.Google Scholar
  8. Butts, C. T., Petrescu-Prahova, M., & Remy Cross, B. (2007). Responder communication networks in the world trade center disaster: Implications for modeling of communication within emergency settings. Mathematical Sociology, 31(2), 121–147.CrossRefGoogle Scholar
  9. Centola, D., & Macy, M. (2007). Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3), 702–734.CrossRefGoogle Scholar
  10. DuBois, C., Butts, C., & Smyth, P. (2013a). Stochastic blockmodeling of relational event dynamics. In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, 238–246.Google Scholar
  11. DuBois, C., Butts, C. T., McFarland, D., & Smyth, P. (2013b). Hierarchical models for relational event sequences. Journal of Mathematical Psychology, 57(6), 297–309.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Freidkin, N. (1998). A structural theory of social influence. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Gibson, D. R. (2003). Participation shifts: Order and differentiation in group conversation. Social Forces, 81(4), 1335–1381.CrossRefGoogle Scholar
  14. Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1369–1380.CrossRefGoogle Scholar
  15. Heider, F. (1946). Attitudes and cognitive organization. Journal of Psychology, 21, 107–112.CrossRefGoogle Scholar
  16. Koskinen, J. H., & Snijders, T. A. (2007). Bayesian inference for dynamic social network data. Journal of Statistical Planning and Inference, 137(12), 3930–3938.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Krivitsky, P. N., & Handcock, M. S. (2014). A separable model for dynamic networks. Journal of the Rotal Statistical Society, Series B, 76(1), 29–46.MathSciNetCrossRefGoogle Scholar
  18. Lakon, C. M., Hipp, J. R., Wang, C., Butts, C. T., & Jose, R. (2015). Simulating dynamic network models and adolescent smoking: The impact of varying peer influence and peer selection. American Journal of Public Health, 105(12), 2438–2448.CrossRefGoogle Scholar
  19. Leenders, R., Contractor, N. S., & DeChurch, L. A. (2015). Once upon a time: Understanding team dynamics as relational event networks. Organizational Psychology Review., 6(1), 92–115.CrossRefGoogle Scholar
  20. Liang, H. (2014). The organizational principles of online political discussion: A relational event stream model for analysis of web forum deliberation. Human Communication Research, 40(4), 483–507.CrossRefGoogle Scholar
  21. Marcum, C. S., & Butts, C. T. (2015). Creating sequence statistics for egocentric relational events models using informr. Journal of Statistical Software, 64(5), 1–34.CrossRefGoogle Scholar
  22. Mayer, K. U., & Tuma, N. B. (1990). Event history analysis in life course research. Madison, WI: University of Wisconsin Press.Google Scholar
  23. McFarland, D. (2001). Student resistance: How the formal and informal organization of classrooms facilitate everyday forms of student defiance. American Journal of Sociology, 107(3), 612–678.CrossRefGoogle Scholar
  24. Mills, M. (2011). Introducing survival and event history analysis. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  25. Morris, M., Goodreau, S., & Moody, J. (2007). Sexual networks, concurrency, and STD/HIV. In K. K. Holmes, P. F. Sparling, W. E. Stamm, P. Piot, J. N. Wasserheit, & L. Corey (Eds.), Sexually transmitted diseases (pp. 109–126). New York: McGraw-Hill.Google Scholar
  26. Patison, K., Quintane, E., Swain, D., Robins, G. L., & Pattison, P. (2015). Time is of the essence: An application of a relational event model for animal social networks. Behavioral Ecology and Sociobiology, 69(5), 841–855.CrossRefGoogle Scholar
  27. Petrescu-Prahova, M., & Butts, C. T. (2008). Emergent coordinators in the World Trade Center Disaster. International Journal of Mass Emergencies and Disasters, 26(3), 133–168.Google Scholar
  28. Price, D. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American society for Information Science, 27(5), 292–306.CrossRefGoogle Scholar
  29. Rapoport, A. (1949). Outline of a probabilistic approach to animal sociology. Bulletin of Mathematical Biophysics, 11, 183–196.CrossRefGoogle Scholar
  30. Robins, G. L., & Pattison, P. (2001). Random graph models for temporal processes in social networks. Mathematical Sociology, 25, 5–41.CrossRefzbMATHGoogle Scholar
  31. Sampson, S. (1969). Crisis in a cloister. Doctoral Dissertation: Cornell University.Google Scholar
  32. Snijders, T. A. (1996). Stochastic actor-oriented models for network change. Mathematical Sociology, 23, 149–172.CrossRefzbMATHGoogle Scholar
  33. Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. Sociological Methodology, 31, 361–395.CrossRefGoogle Scholar
  34. Tranmer, M., Marcum, C. S., Morton, F. B., Croft, D. P., & de Kort, S. R. (2015). Using the relational event model (rem) to investigate the temporal dynamics of animal social networks. Animal Behaviour, 101, 99–105.CrossRefGoogle Scholar
  35. Wang, C., Hipp, J. R., Butts, C. T., Jose, R., & Lakon, C. M. (2016). Coevolution of adolescent friendship networks and smoking and drinking behaviors with consideration of parental influence. Psychology of Addictive Behaviors, 30(3), 312–324.CrossRefGoogle Scholar
  36. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press, Cambridge.CrossRefzbMATHGoogle Scholar
  37. Wasserman, S., & Robins, G. L. (2005). An introduction to random graphs, dependence graphs, and p_. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 192–214). Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of California IrvineIrvineUSA
  2. 2.National Institutes of HealthBethesdaUSA

Personalised recommendations