Clusters pp 87-135 | Cite as

Structural Evolution, Vibrational Signatures and Energetics of Niobium Clusters from Nb2 to Nb20

  • Pham Vu Nhat
  • Devashis Majumdar
  • Jerzy Leszczynski
  • Minh Tho Nguyen
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 23)


A comprehensive review on geometric and electronic structures, spectroscopic and energetic properties of small niobium clusters in the range from two to twenty atoms, Nbn, n = 2–20, in three different charged states is presented including a systematic comparison of quantum chemical results with available experimental data to assign the lowest-lying structures of Nbn clusters and their IR spectra and some basic thermochemical parameters including total atomization (TAE) and dissociation (D e) energies based on DFT and CCSD(T) results. Basic energetic properties including electron affinities, ionization energies, binding energies per atom, and stepwise dissociation energies are further discussed. Energetic parameters of small sizes often exhibit odd–even oscillations. Of the clusters considered, Nb2, Nb4, Nb8 and Nb10 were found to be magic as they hold the numbers of valence electrons corresponding to the closed-shell in the electron shells [1S/1P/2S/1D/1F…..]. Nb10 has a spherically aromatic character , high chemical hrT high chemical hardness and large HOMO–LUMO gap. The open-shell Nb15 system is also particularly stable and can form a highly symmetric structure in all charged states. For species with an encapsulated Nb atom, an electron density flow is present from the cage skeleton to the central atom, and the greater the charge involved the more stabilized the cluster is.


Niobium clusters Structural evolution Vibrational signatures Infrared spectra Electronic structure Electron shells Spherical aromaticity 



PVN thanks Can Tho University for financial support. MTN is indebted to the KU Leuven Research Council for continuing support through GOA programs. Jerzy Leszczynski acknowledges the support of NSF CREST (HRD-0833178) and PREM (DMR-1205194) projects. We thank Dr. Andre Fielicke at Technical University of Berlin, Germany, for assistance with experimental IR spectra.


  1. 1.
    Griffith WP, Morris PJT (2003) Notes Rec R Soc Lond 57:299CrossRefGoogle Scholar
  2. 2.
    Wollaston WH (1811) Phil Trans R Soc Lond 101:96CrossRefGoogle Scholar
  3. 3.
    Rose H (1845) Philos Mag 26:179Google Scholar
  4. 4.
    Blomstrand M, Deville H, Troost L, Hermann R (1866) Fresenius J Anal Chem 5:384CrossRefGoogle Scholar
  5. 5.
    Rayner-Canham G, Zheng Z (2008) Found Chem 10:13CrossRefGoogle Scholar
  6. 6.
    Peiniger M, Piel H (1985) Nucl Sci 32:3610CrossRefGoogle Scholar
  7. 7.
    Patel Zh, Khulka K (2001) Metallurgist 45:477CrossRefGoogle Scholar
  8. 8.
    De Heer WA (1993) Rev Mod Phys 65:611CrossRefGoogle Scholar
  9. 9.
    Schmid G (2001) Adv Eng Mater 3:737CrossRefGoogle Scholar
  10. 10.
    Knickelbein MB, Yang S (1990) J Chem Phys 93(1476):5760CrossRefGoogle Scholar
  11. 11.
    Kietzmann H, Morenzin J, Bechthold PS, Ganteför G, Eberhardt W, Yang DS, Hackett PA, Fournier R, Pang T, Chen C (1996) Phys Rev Lett 77:4528CrossRefGoogle Scholar
  12. 12.
    Kietzmann H, Morenzin J, Bechthold PS, Ganteför G, Eberhardt W (1998) J Chem Phys 109:2275CrossRefGoogle Scholar
  13. 13.
    Wrigge G, Hoffmann MA, Von Issendorff B, Haberland J (2003) Eur Phys J D 24:23CrossRefGoogle Scholar
  14. 14.
    Berces A, Hackett PA, Lian L, Mitchell SA, Rayner DM (1998) J Chem Phys 108:5476CrossRefGoogle Scholar
  15. 15.
    Holmgren L, Andersson M, Rosen A (1995) Surf Sci 331:231CrossRefGoogle Scholar
  16. 16.
    Lapoutre VJF, Haertelt MO, Meijer G, Fielicke A, Bakker JM (2013) J Chem Phys 139:121101CrossRefGoogle Scholar
  17. 17.
    Berg C, Schindler T, Niedner-Schatteburg G, Bondybey VE (1995) J Chem Phys 102:4870CrossRefGoogle Scholar
  18. 18.
    Vakhtin AB, Sugawara K (1999) Chem Phys Lett 299:553CrossRefGoogle Scholar
  19. 19.
    Moro R, Xu X, Yin S, De Heer WA (2003) Science 300:1265CrossRefGoogle Scholar
  20. 20.
    Knickelbein MB, Menezes WJC (1992) Phys Rev Lett 69:1046CrossRefGoogle Scholar
  21. 21.
    Menezes WJC, Knickelbein MB (1993) J Chem Phys 98:1856CrossRefGoogle Scholar
  22. 22.
    Majumdar D, Balasubramanian K (2001) J Chem Phys 115:885CrossRefGoogle Scholar
  23. 23.
    Majumdar D, Balasubramanian K (2003) J Chem Phys 119:12866CrossRefGoogle Scholar
  24. 24.
    Majumdar D, Balasubramanian K (2004) J Chem Phys 121:4014CrossRefGoogle Scholar
  25. 25.
    Goodwin L, Salahub DR (1993) Phys Rev A 47R774Google Scholar
  26. 26.
    Gronbeck H, Rosen A, Andreoni W (1998) Phys Rev A 58:4630CrossRefGoogle Scholar
  27. 27.
    Kumar V, Kawazoe Y (2002) Phys Rev B 65:125403CrossRefGoogle Scholar
  28. 28.
    Fowler JE, Garcia A, Ugalde JM (1999) Phys Rev A 60:3058CrossRefGoogle Scholar
  29. 29.
    Calaminici P, Mejia-Olvera R (2011) J Phys Chem C 115:11891CrossRefGoogle Scholar
  30. 30.
    Fielicke A, Ratsch C, Helden GV, Meijer G (2005) J Chem Phys 122:091105CrossRefGoogle Scholar
  31. 31.
    Fielicke A, Ratsch C, Helden GV, Meijer G (2007) J Chem Phys 127:234306CrossRefGoogle Scholar
  32. 32.
    Haertelt M, Lapoutre VJF, Bakker JM, Redlich B, Harding DJ, Fielicke A, Meijer G (2011) J Phys Chem Lett 2:1720CrossRefGoogle Scholar
  33. 33.
    Nhat PV, Ngan VT, Nguyen MT (2010) J Phys Chem C 114:13210CrossRefGoogle Scholar
  34. 34.
    Nhat PV, Ngan VT, Tai TB, Nguyen MT (2011) J Phys Chem A 115:3523CrossRefGoogle Scholar
  35. 35.
    Nhat PV, Nguyen MT (2012) J Phys Chem A 116:7405CrossRefGoogle Scholar
  36. 36.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Burke K, Wang Y (1992) Phys Rev B 96:6796Google Scholar
  38. 38.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  39. 39.
    Peterson KA (2003) J Chem Phys 119:11099CrossRefGoogle Scholar
  40. 40.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys. 119:11113CrossRefGoogle Scholar
  41. 41.
    Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283CrossRefGoogle Scholar
  42. 42.
    Jug K, Zimmermann B, Calaminizi P, Kçster A (2002) J Chem Phys 116:4497CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  44. 44.
    James AM, Kowalczyk P, Fournier R, Simard B (1993) J Chem Phys 99:8504CrossRefGoogle Scholar
  45. 45.
    Hales DA, Lian L, Armentrout PB (1990) Int J Mass Spectrom Ion Proc 102:269CrossRefGoogle Scholar
  46. 46.
    Aydin M, Lombardi JR (2004) Int J Mass Spectrom 235:91CrossRefGoogle Scholar
  47. 47.
    James AM, Kowalczyk P, Langlois E, Campbell E, Ogawa A, Simard B (1994) J Chem Phys 101:4485CrossRefGoogle Scholar
  48. 48.
    Fournier R, Pang T, Chen C (1998) Phys Rev A 57:3683CrossRefGoogle Scholar
  49. 49.
    Moskovits M, Limm W (1986) Ultramicroscopy 83:20Google Scholar
  50. 50.
    Loh SK, Lian L, Armentrout PB (1989) J Am Chem Soc 111:3167CrossRefGoogle Scholar
  51. 51.
    Lombardi JR, Davis B (2002) Chem Rev 102:2431CrossRefGoogle Scholar
  52. 52.
    Balasubramanian K, Zhu XL (2001) J Chem Phys 114:10375CrossRefGoogle Scholar
  53. 53.
    Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:4388CrossRefGoogle Scholar
  54. 54.
    Aydin M, Lombardi JR (2009) J Phys Chem A 113:2809CrossRefGoogle Scholar
  55. 55.
    Zhai HJ, Wang B, Huang X, Wang LS (2009) J Phys Chem A 113:3866CrossRefGoogle Scholar
  56. 56.
    Wang H, Craig R, Haouari H, Liu Y, Lombardi JR, Lindsay DM (1996) J Chem Phys 105:5355CrossRefGoogle Scholar
  57. 57.
    Walsh TR (2006) J Chem Phys 124:204317CrossRefGoogle Scholar
  58. 58.
    Fielicke A, Meijer G (2011) J Phys Chem A 115:7869CrossRefGoogle Scholar
  59. 59.
    Moro R, Yin S, Xu X, De Heer WA (2004) Phys Rev Lett 93:086803CrossRefGoogle Scholar
  60. 60.
    Hamrick Y, Taylor S, Lemire GW, Fu ZW, Shui JC, Morse MD (1988) J Chem Phys 88:4095CrossRefGoogle Scholar
  61. 61.
    Sun Y, Fournier R, Zhang M (2009) Phys Rev A 79:043202CrossRefGoogle Scholar
  62. 62.
    Kumar V (2006) Comput Mater Sci 35:375CrossRefGoogle Scholar
  63. 63.
    Nhat PV, Ngan VT, Tai TB, Nguyen MT (2011) J Phys Chem A 115:3523CrossRefGoogle Scholar
  64. 64.
    King RB (1995) Inorg Chim Acta 235:111CrossRefGoogle Scholar
  65. 65.
    Besley NA, Johnston RL, Stace AJ, Uppenbrink J (1995) Theor Chim Acta 341:75Google Scholar
  66. 66.
    Hearn JE, Johnston RL (1997) J Chem Phys 107:4674CrossRefGoogle Scholar
  67. 67.
    Lloyd LD, Johnston RL (2000) J Chem Soc, Dalton Trans 3:307CrossRefGoogle Scholar
  68. 68.
    Elkind JL, Weiss FD, Alford JM, Laaksonen RT, Smalley RE (1988) J Chem Phys 88:5215CrossRefGoogle Scholar
  69. 69.
    Gruene P, Rayner DM, Redlich B, Van Der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674CrossRefGoogle Scholar
  70. 70.
    Song W, Lu WC, Zang QJ, Wang CZ, Ho KM (2012) Int J Quant Chem 112:1717CrossRefGoogle Scholar
  71. 71.
    Zhang H, Tian D, Zhao D (2008) J Chem Phys 129:114302CrossRefGoogle Scholar
  72. 72.
    Janssens E, Neukermans S, Lievens P (2004) Curr Opin Solid State Mater Sci 8:185CrossRefGoogle Scholar
  73. 73.
    Höltzl T, Veszpremi T, Lievens P, Nguyen MT (2011) In: Chattarij PK (Ed) Aromaticity and metal clusters. CRC Press, Boca Rota, FL, USA, Chapter 14:271Google Scholar
  74. 74.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793CrossRefGoogle Scholar
  75. 75.
    Rappoport D, Crawford NRM, Furche F, Burke K (2009) In: Solomon EI, King RB, Scott RA (ed) Computational inorganic and bioinorganic chemistry. Wiley, Chichester, USAGoogle Scholar
  76. 76.
    Gronbeck H, Rosen A (1996) Phys Rev B 54:0163CrossRefGoogle Scholar
  77. 77.
    Sakurai M, Watanabe K, Sumiyama K, Suzuki K (1999) J Chem Phys 111:235CrossRefGoogle Scholar
  78. 78.
    Berg C, Schindler T, Kantlehner M, Schatteburg GN, Bondybey VE (2000) Chem Phys 262:143CrossRefGoogle Scholar
  79. 79.
    Pfeffer B, Jaberg S, Schatteburg GN (2009) J Chem Phys 131:194305CrossRefGoogle Scholar
  80. 80.
    Wu Q, Yang S (1999) Int J Mass Spectrom 184:57CrossRefGoogle Scholar
  81. 81.
    Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141CrossRefGoogle Scholar
  82. 82.
    de Heer WA, Knight WD, Chou MY, Cohen ML (1987) Solid State Phys. 40:93Google Scholar
  83. 83.
    Alonso JA, March NH (1989) Electrons in metals and alloys. Academic Press, LondonGoogle Scholar
  84. 84.
    Tenderholt A (2005) PyMOlyze-2.0. Stanford University, StanfordGoogle Scholar
  85. 85.
    Hirsch A, Chen Z, Jiao H (2000) Angew Chem Int Ed 39:3915CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pham Vu Nhat
    • 1
  • Devashis Majumdar
    • 2
  • Jerzy Leszczynski
    • 2
  • Minh Tho Nguyen
    • 3
  1. 1.Department of ChemistryCan Tho UniversityCan ThoVietnam
  2. 2.Interdisciplinary Center for Nanotoxicity, Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA
  3. 3.Department of ChemistryKU LeuvenLeuvenBelgium

Personalised recommendations