Automated Verification of Functional Correctness of Race-Free GPU Programs

  • Kensuke Kojima
  • Akifumi Imanishi
  • Atsushi Igarashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9971)


We study an automated verification method for functional correctness of parallel programs running on GPUs. Our method is based on Kojima and Igarashi’s Hoare logic for GPU programs. Our algorithm generates verification conditions (VCs) from a program annotated by specifications and loop invariants and pass them to off-the-shelf SMT solvers. It is often impossible, however, to solve naively generated VCs in reasonable time. A main difficulty stems from quantifiers over threads due to the parallel nature of GPU programs. To overcome this difficulty, we additionally apply several transformations to simplify VCs before calling SMT solvers.

Our implementation successfully verifies correctness of several GPU programs, including matrix multiplication optimized by using shared memory. In contrast to many existing tools, our verifier succeeds in verifying fully parameterized programs: parameters such as the number of threads and the sizes of matrices are all symbolic. We empirically confirm that our simplification heuristics is highly effective for improving efficiency of the verification procedure.


  1. 1.
    Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson, P., Wickerson, J.: The design and implementation of a verification technique for GPU kernels. ACM Trans. Program. Lang. Syst. 37(3), 10:1–10:49 (2015)CrossRefGoogle Scholar
  2. 2.
    Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU programs. Sci. Comput. Prog. 95(3), 376–388 (2014)CrossRefGoogle Scholar
  3. 3.
    Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers. In: 1st International Workshop on Intermediate Verification Languages, Boogie 2011, pp. 53–64, Wroclaw, Poland (2011)Google Scholar
  4. 4.
    Bozga, M., Iosif, R.: On decidability within the arithmetic of addition and divisibility. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 425–439. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31982-5_27. CrossRefGoogle Scholar
  5. 5.
    Cachera, D., Jensen, T.P., Jobin, A., Kirchner, F.: Inference of polynomial invariants for imperative programs: a farewell to Gröbner bases. Sci. Comput. Prog. 93, 89–109 (2014)CrossRefGoogle Scholar
  6. 6.
    Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 203–218. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34188-5_18 CrossRefGoogle Scholar
  7. 7.
    Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer, Heidelberg (2001). doi: 10.1007/3-540-45251-6_29 CrossRefGoogle Scholar
  8. 8.
    Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact verification conditions. In: Proceedings of ACM POPL, pp. 193–205 (2001)Google Scholar
  9. 9.
    Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08867-9_5 Google Scholar
  10. 10.
    Kojima, K., Igarashi, A.: A hoare logic for SIMT programs. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 58–73. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03542-0_5 CrossRefGoogle Scholar
  11. 11.
    Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional verification of procedural programs using Horn clauses over integers and arrays. In: Formal Methods in Computer-Aided Design, FMCAD 2015, pp. 89–96, Austin, Texas, USA, 27–30 September 2015Google Scholar
  12. 12.
    Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00593-0_33 CrossRefGoogle Scholar
  13. 13.
    Lechner, A., Ouaknine, J., Worrell, J.: On the complexity of linear arithmetic with divisibility. In: Proceedings of 30th Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS 2015), pp. 667–676 (2015)Google Scholar
  14. 14.
    Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In: Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2010), pp. 187–196. ACM (2010)Google Scholar
  15. 15.
    Li, G., Gopalakrishnan, G.: Parameterized verification of GPU kernel programs. In: IPDPS Workshop on Multicore and GPU Programming Models, Languages and Compilers Wokshop, pp. 2450–2459. IEEE (2012)Google Scholar
  16. 16.
    Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE: concolic verification and test generation for GPUs. In: Proceedings of ACM PPoPP, pp. 215–224 (2012)Google Scholar
  17. 17.
    Li, P., Li, G., Gopalakrishnan, G.: Parametric flows: automated behavior equivalencing for symbolic analysis of races in CUDA programs. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC 2012). IEEE Computer Society Press (2012)Google Scholar
  18. 18.
    Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking of GPU programs. In: Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2014), pp. 179–190 (2014)Google Scholar
  19. 19.
    McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_31 CrossRefGoogle Scholar
  20. 20.
    Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). doi: 10.1007/3-540-45937-5_16 CrossRefGoogle Scholar
  21. 21.
    Nguyen, H.: GPU Gems 3, 1st edn. Addison-Wesley Professional, Reading (2007). Google Scholar
  22. 22.
    NVIDIA: NVIDIA CUDA C Programming Guide (2014).

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kensuke Kojima
    • 1
    • 2
  • Akifumi Imanishi
    • 1
  • Atsushi Igarashi
    • 1
    • 2
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.JST CRESTTokyoJapan

Personalised recommendations