Advertisement

Spatial Tuples: Augmenting Physical Reality with Tuple Spaces

  • Alessandro RicciEmail author
  • Mirko Viroli
  • Andrea Omicini
  • Stefano Mariani
  • Angelo Croatti
  • Danilo Pianini
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 678)

Abstract

We introduce Spatial Tuples, an extension of the basic tuplebased model for distributed multi-agent system coordination where (i) tuples are conceptually placed in the physical world and possibly move, (ii) the behaviour of coordination primitives may depend on the spatial properties of the coordinating agents, and (iii) the tuple space can be conceived as a virtual layer augmenting physical reality. Motivated by the needs of mobile augmented-reality applications, Spatial Tuples explicitly aims at supporting space-aware and space-based coordination in agent-based pervasive computing scenarios.

Keywords

Cloud Computing Physical Space Augmented Reality Physical Reality Mutual Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. T. Azuma et al. A survey of augmented reality. Presence, 6(4):355–385, 1997.Google Scholar
  2. N. Bartelme. Geographic information systems. In W. Kresse and M. D. Danko, editors, Springer Handbook of Geographic Information, pages 59–71. Springer, 2012.Google Scholar
  3. J. Beal, D. Pianini, and M. Viroli. Aggregate programming for the Internet of Things. IEEE Computer, 48(9):22–30, Sept. 2015.Google Scholar
  4. A. Brogi and P. Ciancarini. The concurrent language, Shared Prolog. ACM Transactions on Programming Languages and Systems, 13(1):99–123, Jan. 1991.Google Scholar
  5. E. Costanza, A. Kunz, and M. Fjeld. Mixed reality: A survey. In D. Lalanne and J. Kohlas, editors, Human Machine Interaction, pages 47–68. Springer, 2009.Google Scholar
  6. E. Denti, A. Omicini, and A. Ricci. tuProlog: A light-weight Prolog for Internet applications and infrastructures. In I. Ramakrishnan, editor, Practical Aspects of Declarative Languages, volume 1990 of LNCS, pages 184–198. Springer, 2001.Google Scholar
  7. D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and Systems, 7(1):80–112, 1985.Google Scholar
  8. R. H. Güting. An introduction to spatial database systems. The VLDB Journal, 3(4):357–399, 1994.Google Scholar
  9. M. Hazas, J. Scott, and J. Krumm. Location-aware computing comes of age. Computer, 37(2):95–97, Feb 2004.Google Scholar
  10. M. Mamei and F. Zambonelli. Programming pervasive and mobile computing applications: The TOTA approach. ACM Transactions on Software Engineering Methodologies, 18(4):1–56, 2009.Google Scholar
  11. S. Mariani and A. Omicini. Space-aware coordination in ReSpecT. In M. Baldoni, C. Baroglio, F. Bergenti, and A. Garro, editors, From Objects to Agents, volume 1099 of CEUR Workshop Proceedings, pages 1–7, Turin, Italy, 2–3 Dec. 2013.Google Scholar
  12. A. Omicini and E. Denti. From tuple spaces to tuple centres. Science of Computer Programming, 41(3):277–294, Nov. 2001.Google Scholar
  13. A. Omicini and F. Zambonelli. Coordination for Internet application development. Autonomous Agents and Multi-Agent Systems, 2(3):251–269, Sept. 1999.Google Scholar
  14. J. Pauty, P. Couderc, M. Banatre, and Y. Berbers. Geo-Linda: a geometry aware distributed tuple space. In Advanced Information Networking and Applications, pages 370{377, 2007. 21st International Conference (AINA ‘07), 21–23 May 2007, Niagara Falls, ON, CA. Proceedings.Google Scholar
  15. G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda meets mobility. In The 1999 International Conference on Software Engineering (ICSE’99), pages 368–377. ACM, 1999. May 16-22, Los Angeles (CA), USA.Google Scholar
  16. A. Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva. Cognitive stigmergy: Towards a framework based on agents and artifacts. In D. Weyns, H. V. D. Parunak, and F. Michel, editors, Environments for Multi-Agent Systems III, volume 4389 of LNCS, pages 124–140. Springer, 2007.Google Scholar
  17. A. Ricci, M. Piunti, L. Tummolini, and C. Castelfranchi. The mirror world: Preparing for mixed-reality living. IEEE Pervasive Computing, 14(2):60–63, 2015.Google Scholar
  18. R. Scoble and S. Israel. The Age of Context. Patrick Brewster Press, Apr. 2014.Google Scholar
  19. T. Starner. Wearable computers: no longer science fiction. Pervasive Computing, IEEE, 1(1):86–88, Jan 2002.Google Scholar
  20. H. Van Dyke Parunak. A survey of environments and mechanisms for humanhuman stigmergy. In D. Weyns, H. Van Dyke Parunak, and F. Michel, editors, Environments for Multi-Agent Systems II, volume 3830 of LNCS, pages 163–186. Springer, 2006.Google Scholar
  21. M. Viroli, D. Pianini, and J. Beal. Linda in space-time: an adaptive coordination model for mobile ad-hoc environments. In M. Sirjani, editor, Coordination Models and Languages, volume 7274 of LNCS, pages 212–229. Springer, 2012.Google Scholar
  22. C. Yang, M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y. Xu, M. Bambacus, and D. Fay. Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? International Journal of Digital Earth, 4(4):305–329, 2011.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandro Ricci
    • 1
    Email author
  • Mirko Viroli
    • 1
  • Andrea Omicini
    • 1
  • Stefano Mariani
    • 1
  • Angelo Croatti
    • 1
  • Danilo Pianini
    • 1
  1. 1.Università di BolognaBolognaItaly

Personalised recommendations