Recognition of Activities in Resource Constrained Environments; Reducing the Computational Complexity

  • M. EspinillaEmail author
  • A. Rivera
  • M. D. Pérez-Godoy
  • J. Medina
  • L. Martínez
  • C. Nugent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10070)


In our current work we propose a strategy to reduce the vast amounts of data produced within smart environments for sensor-based activity recognition through usage of the nearest neighbor (NN) approach. This approach has a number of disadvantages when deployed in resource constrained environments due to its high storage requirements and computational complexity. These requirements are closely related to the size of the data used as input to NN. A wide range of prototype generation (PG) algorithms, which are designed for use with the NN approach, have been proposed in the literature to reduce the size of the data set. In this work, we investigate the use of PG algorithms and their effect on binary sensor-based activity recognition when using a NN approach. To identify the most suitable PG algorithm four datasets were used consisting of binary sensor data and their associated class activities. The results obtained demonstrated the potential of three PG algorithms for sensor-based activity recognition that reduced the computational complexity by up to 95 % with an overall accuracy higher than 90 %.


Activity recognition Resource constrained environments Nearest Neighbor (NN) Prototype generation (PG) Computational complexity 



This contribution has been supported by research projects: TIN2015-66524-P and UJAEN/2014/06/14. Invest Northern Ireland is acknowledged for partially supporting this project under the Competence Centre Program Grant RD0513853 - Connected Health Innovation Centre.


  1. 1.
    Chen, L., Hoey, J., Nugent, C., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 42(6), 790–808 (2012)CrossRefGoogle Scholar
  2. 2.
    Maksimovic, M., Vujovic, V., Davidovic, N., Milosevic, V., Raspberry, P.B.: Pi as internet of things hardware: performances and constraints. Des. Issues 3(8), 8 (2014)Google Scholar
  3. 3.
    Doukas, C.: Building Internet of Things with the ARDUINO. CreateSpace Independent Publishing Platform, USA (2012)Google Scholar
  4. 4.
    Botta, A., Donato, W., Persico, V., Pescape, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)CrossRefGoogle Scholar
  5. 5.
    Chui, M., Loffler, M., Roberts, R.: The Internet of Things (Process Optimization). McKinsey Quarterly, Germany (2010)Google Scholar
  6. 6.
    Gu, T., Wang, L., Wu, Z., Tao, X., Lu, J.: A pattern mining approach to sensor-based human activity recognition. IEEE Trans. Knowl. Data Eng. 23(9), 1359–1372 (2011)CrossRefGoogle Scholar
  7. 7.
    Li, C., Lin, M., Yang, L.T., Ding, C.: Integrating the enriched feature with machine learning algorithms for human movement and fall detection. J. Supercomput. 67(3), 854–865 (2014)CrossRefGoogle Scholar
  8. 8.
    San Martin, L.A., Pelaez, V.M., Gonzalez, R., Campos, A., Lobato, V.: Environmental user-preference learning for smart homes: an autonomous approach. J. Ambient Intell. Smart Environ. 2(3), 327–342 (2010)Google Scholar
  9. 9.
    Chen, L., Nugent, C.: Ontology-based activity recognition in intelligent pervasive environments. Int. J. Web Inf. Syst. 5(4), 410–430 (2009)CrossRefGoogle Scholar
  10. 10.
    Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012)CrossRefGoogle Scholar
  11. 11.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (1967)CrossRefzbMATHGoogle Scholar
  12. 12.
    Wu, X., Kumar, V.: The Top Ten Algorithms in Data Mining, 1st edn. Chapman & Hall/CRC, Boca Raton (2009)CrossRefGoogle Scholar
  13. 13.
    Al-Faiz, M.Z., Ali, A.A., Miry, A.H.: A k-nearest neighbor based algorithm for human arm movements recognition using EMG signals. In: EPC-IQ 2010, pp. 159–167 (2010)Google Scholar
  14. 14.
    Jafari, R., Li, W., Bajcsy, R., Glaser, S., Sastry, S.: Physical activity monitoring for assisted living at home. In: Leonhardt, S., Falck, T., Mähönen, P. (eds.) BSN 2007. IFMBE, vol. 13, pp. 213–219. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Moayeri Pour, G., Troped, P.J., Evans, J.J.: Environment feature extraction and classification for context aware physical activity monitoring. In: SAS 2013, pp. 123–128 (2013)Google Scholar
  16. 16.
    Kononenko, I., Machine, K.M., Learning, D.M.: Introduction to Principles and Algorithms. Horwood Publishing Limited, Chichester (2007)Google Scholar
  17. 17.
    Garcia, S., Derrac, J., Cano, J.R., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012)CrossRefGoogle Scholar
  18. 18.
    Lozano, M., Sotoca, J.M., Sanchez, J.S., Pla, F., Pekalska, E., Duin, R.P.W.: Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces. Pattern Recognit. 39(10), 1827–1838 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Garcia, E.K., Feldman, S., Gupta, M.R., Srivastava, S.: Completely lazylearning. IEEE Trans. Knowl. Data Eng. 22(9), 1274–1285 (2010)CrossRefGoogle Scholar
  21. 21.
    Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38(3), 257–286 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Geva, S., Site, J.: Adaptive nearest neighbor pattern classifier. IEEE Trans. Neural Netw. 2(2), 318–322 (1991)CrossRefGoogle Scholar
  23. 23.
    Kim, S.W., Oomenn, A.: A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Anal. Appl. 6, 232–244 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    The, K.T.: The self-organizative map. Proc. IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  25. 25.
    Koplowitz, J., Brown, T.A.: On the relation of performance to editing in nearest neighbor rules. Pattern Recognit. 13, 251–255 (1981)CrossRefGoogle Scholar
  26. 26.
    Sanchez, J.S., Barandela, R., Marques, A.I., Alejo, R., Badenas, J.: Analysis of new techniques to obtain quaylity training sets. Pattern Recognit. Lett. 24, 1015–1022 (2003)CrossRefGoogle Scholar
  27. 27.
    Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23(11), 1179–1184 (1974)CrossRefzbMATHGoogle Scholar
  28. 28.
    Fayed, H.A., Hashem, S.R., Atiya, A.F.: Self-generating prototypes for pattern classification. Pattern Recognit. 40(5), 1498–1509 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Raicharoen, T., Lursinsap, C.: A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm. Pattern Recognit. Lett. 26(10), 1554–1567 (2005)CrossRefGoogle Scholar
  30. 30.
    Sanchez, J.S.: High training set size reduction by space partitioning and prototype abstraction. Pattern Recognit. 37, 1561–1564 (2004)CrossRefGoogle Scholar
  31. 31.
    Cook, D.J., Schmitter-Edgecombe, M.: Assessing the quality of activities in a smart environment. Method Inf. Med. 48(5), 480–485 (2009)CrossRefGoogle Scholar
  32. 32.
    Synnott, J., Chen, L., Nugent, C.D., Moore, G.: The creation of simulated activity datasets using a graphical intelligent environment simulation tool, pp. 4143–4146 (2014)Google Scholar
  33. 33.
    Nugent, C., Synnott, J., Santanna, A., Espinilla, M., Cleland, I., Banos, L.J.O., et al.: An initiative for the creation of open datasets within the pervasive healthcare, pp. 180–183 (2016)Google Scholar
  34. 34.
    Van Kasteren, T., Noulas, A., Englebienne, G., Krse, B.: Accurate activity recognition in a home setting, pp. 1–9 (2008)Google Scholar
  35. 35.
    Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17(2–3), 255–287 (2011)Google Scholar
  36. 36.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, London (1982)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • M. Espinilla
    • 1
    Email author
  • A. Rivera
    • 1
  • M. D. Pérez-Godoy
    • 1
  • J. Medina
    • 1
  • L. Martínez
    • 1
  • C. Nugent
    • 2
  1. 1.Computer Sciences DepartmentUniversity of JaénJaénSpain
  2. 2.School of Computing and MathematicsUniversity of UlsterJordanstownUK

Personalised recommendations