ICAA13 Pittsburgh pp 1395-1400 | Cite as

Melt Conditioned Casting of Aluminum Alloys

  • Geoff Scamans
  • Hu-Tian Li
  • Zhongyun Fan


High shear melt conditioning of aluminum alloy melts disperses oxide films and provides potent nuclei to promote non-dendritic solidification leading to refined as cast microstructures for shape castings, semis or continuously cast product forms. A new generation of high shear melt conditioning equipment has been developed based on a dispersive mixer that can condition either a batch melt or can provide a continuous melt feed. Most significantly the melt conditioner can be used directly in the sump of a DC caster where it has a dramatic effect on the cast microstructure. The present goals are to expand the castable alloy range and to increase the tolerance of alloys used in transport applications to impurities to increase the use of recycled metal. The paper will review the current status of the melt conditioning technology across the range of casting options and will highlight development opportunities.


Melt conditioning Aluminum alloys Grain refinement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Campbell, Castings. 2nd Ed. (Oxford: Butterworth-Heinemann, 2003), 2–7.Google Scholar
  2. 2.
    D. V. Neff, ASM Handbook, vol. 15 Casting, (ASM, 2008), 194.Google Scholar
  3. 3.
    Z. Fan et al., Acta Mater, 2009; 57: 4891–4901.CrossRefGoogle Scholar
  4. 4.
    Z. Fan, Y. B. Zuo and B. Jiang, Mater Sci Forum, 690 (2011), 141–144.CrossRefGoogle Scholar
  5. 5.
    S. A. Impey, D. J. Stephenson and J.R. Nicholls, Mater Sci Tech, 4 (1988), 1126–1132.CrossRefGoogle Scholar
  6. 6.
    S. A. Impey, D. J. Stephenson and J. R. Nicholls, (Paper presented at the first international conference on the microscopy of oxidation, University of Cambridge,1991).Google Scholar
  7. 7.
    I. Haginoya and T. Fukusako, Trans Japan Ins Metals,; 24 (1983), 613–619.CrossRefGoogle Scholar
  8. 8.
    K. Wefers and C. Misra, Oxides and Hydroxides of Aluminium. Alcoa, USA: Alcoa Laboratories; 1987.Google Scholar
  9. 9.
    L. A. Narayanan, F. H. Samuel and J. E. Gruzleski, Metall Mater Trans A, 25 (1994), 1761–1773.CrossRefGoogle Scholar
  10. 10.
    H. T. Li, PhD Thesis. Brunel University, Uxbridge, UK; 2011.Google Scholar
  11. 11.
    H. T. Li, Y. Wang and Z. Fan, Acta Mater, 60 (2012), 1258–1537.Google Scholar
  12. 12.
    Y. B. Zuo, B. Jiang and Z. Fan, Mater Sci Forum, 690 (2011), 137–140.CrossRefGoogle Scholar
  13. 13.
    Z. Fan, Proceedings of the John Hunt Symposium, Brunel University, 2011, p29–44.Google Scholar
  14. 14.
    J. Gibbs, In: Collected Works of J. Willard Gibbs, V1. NY: Langman, Green and Co; 1928.Google Scholar
  15. 15.
    A. L. Greer, et al., Acta Mater, 48 (2000), 2823–2835.CrossRefGoogle Scholar
  16. 16.
    T. E. Quested and A.L. Greer, Acta Mater, 52 (2004), 3859–3868.CrossRefGoogle Scholar
  17. 17.
    S. Kumar, et al., Mater Sci Tech, 27 (2011), 1833–1839.CrossRefGoogle Scholar
  18. 18.
    X. Fang, et al., Mater Sci Eng A, 445–446 (2007), 65–72.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2012

Authors and Affiliations

  • Geoff Scamans
    • 1
  • Hu-Tian Li
    • 1
  • Zhongyun Fan
    • 1
  1. 1.Brunel Centre for Advanced Solidification TechnologyBrunel UniversityUxbridge, MiddlesexUK

Personalised recommendations