Reactive Policies with Planning for Action Languages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10021)

Abstract

Action languages are an important family of formalisms to represent action domains in a declarative manner and to reason about them. For this reason, the behavior of an agent in an environment may be governed by policies which take such action domain descriptions into account. In this paper, we describe a formal semantics for describing policies that express a reactive behavior for an agent, and connect our framework with the representation power of action languages. In this framework, we mitigate the large state spaces by employing the notion of indistinguishability, and combine components that are efficient for describing reactivity such as target establishment and (online) planning. Our representation allows one to analyze the flow of executing the given reactive policy, and lays foundations for verifying properties of policies. Additionally, the flexibility of the representation opens a range of possibilities for designing behaviors.

References

  1. 1.
    Baader, F., Zarrieß, B.: Verification of Golog programs over description logic actions. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 181–196. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40885-4_12 CrossRefGoogle Scholar
  2. 2.
    Behnke, G., Höller, D., Biundo, S.: On the complexity of htn plan verification and its implications for plan recognition. In: Proceedings of ICAPS, pp. 25–33 (2015)Google Scholar
  3. 3.
    Bertoli, P., Cimatti, A., Riveri, M., Traverso, P.: Strong planning under partial observability. Artif. Intell. 170(4), 337–384 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by model checking. Auton. Agents Multi-agent Syst. 12(2), 239–256 (2006)CrossRefGoogle Scholar
  5. 5.
    Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and synthesis in description logic based dynamic systems. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 50–64. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39666-3_5 CrossRefGoogle Scholar
  6. 6.
    Cimatti, A., Riveri, M., Traverso, P.: Automatic OBDD-based generation of universal plans in non-deterministic domains. In: Proceedings of AAAI/IAAI, pp. 875–881 (1998)Google Scholar
  7. 7.
    Cimatti, A., Riveri, M., Traverso, P.: Strong planning in non-deterministic domains via model checking. AIPS 98, 36–43 (1998)Google Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  9. 9.
    Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: Proceedings of KR, pp. 589–599 (2008)Google Scholar
  10. 10.
    De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot programs. In: Proceedings of KR, pp. 453–465 (1998)Google Scholar
  11. 11.
    De Giacomo, G., Ternovskaia, E., Reiter, R.: Non-terminating processes in the situation calculus. In: Working Notes of Robots, Softbots, Immobots: Theories of Action, Planning and Control, AAAI 1997 Workshop (1997)Google Scholar
  12. 12.
    Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)CrossRefGoogle Scholar
  13. 13.
    Eiter, T., Erdem, E., Faber, W., Senko, J.: A logic-based approach to finding explanations for discrepancies in optimistic plan execution. Fundamenta Informaticae 79(1–2), 25–69 (2007)MathSciNetMATHGoogle Scholar
  14. 14.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to knowledge-state planning: semantics and complexity. ACM Trans. Comput. Log. 5(2), 206–263 (2004). http://doi.acm.org/10.1145/976706.976708
  15. 15.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In: Proceedings of IJCAI, pp. 90–96 (2005)Google Scholar
  16. 16.
    Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring in dynamic environments. Fundamenta Informaticae 57(2–4), 371–392 (2003)MathSciNetMATHGoogle Scholar
  17. 17.
    Fink, M., Germano, S., Ianni, G., Redl, C., Schüller, P.: ActHEX: implementing HEX programs with action atoms. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 317–322. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40564-8_31 CrossRefGoogle Scholar
  18. 18.
    Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. AI 3(16), 193–210 (1998)MathSciNetGoogle Scholar
  19. 19.
    Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary report. In: Proceedings of AAAI/IAAI, pp. 623–630 (1998)Google Scholar
  20. 20.
    Kowalski, R.A., Sadri, F.: From logic programming towards multi-agent systems. Ann. Math. Artif. Intell. 25(3–4), 391–419 (1999). http://dx.doi.org/10.1023/A:1018934223383
  21. 21.
    Lang, J., Zanuttini, B.: Knowledge-based programs as plans - the complexity of plan verification. In: Proceedings of ECAI, pp. 504–509 (2012)Google Scholar
  22. 22.
    Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic programming language for dynamic domains. J. Log. Program. 31(1), 59–83 (1997)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lomuscio, A., Michliszyn, J.: Verification of multi-agent systems via predicate abstraction against ATLK specifications. In: Proceedings of AAMAS, pp. 662–670 (2016)Google Scholar
  24. 24.
    Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proceedings of KR, pp. 473–484 (1991)Google Scholar
  25. 25.
    Son, T.C., Baral, C.: Formalizing sensing actions - a transition function based approach. Artif. Intell. 125(1), 19–91 (2001)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Soutchanski, M.: High-level robot programming and program execution. In: Proceedings of ICAPS Workshop on Plan Execution (2003)Google Scholar
  27. 27.
    Turner, H.: Polynomial-length planning spans the polynomial hierarchy. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 111–124. Springer, Heidelberg (2002). doi: 10.1007/3-540-45757-7_10 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Technische Universität WienViennaAustria

Personalised recommendations