DRAT Proofs for XOR Reasoning

  • Tobias Philipp
  • Adrián Rebola-Pardo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10021)


Unsatisfiability proofs in the DRAT format became the de facto standard to increase the reliability of contemporary SAT solvers. We consider the problem of generating proofs for the XOR reasoning component in SAT solvers and propose two methods: direct translation transforms every XOR constraint addition inference into a DRAT proof, whereas T-translation avoids the exponential blow-up in direct translations by using fresh variables. T-translation produces DRAT proofs from Gaussian elimination records that are polynomial in the size of the input CNF formula. Experiments show that a combination of both approaches with a simple prediction method outperforms the BDD-based method.


Gaussian Elimination Direct Translation Proof Generation Proof Tree Direct Encode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank an anonymous reviewer who pointed out that the BDD-based approach could be used as a baseline.


  1. 1.
    Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT instances in the presence of symmetry. In: DAC 2002, pp. 731–736. ACM (2002)Google Scholar
  2. 2.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Boutilier, C. (ed.) IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc., Pasadena (2009)Google Scholar
  3. 3.
    Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. 22(1), 319–351 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Belov, A., Diepold, D., Heule, M.J., Järvisalo, M. (eds.): Proceedings of SAT Competition 2014, Department of Computer Science Series of Publications B, vol. B-2014-2. University of Helsinki, Helsinki (2014)Google Scholar
  5. 5.
    Biere, A.: Yet another local search solver and lingeling and friends entering the SAT competition 2014. In: Belov et al. [4], pp. 39–40Google Scholar
  6. 6.
    Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD package. In: DAC, pp. 40–45 (1990)Google Scholar
  7. 7.
    Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Workshop SMT 2010, pp. 1–5. ACM (2009)Google Scholar
  8. 8.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  9. 9.
    Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 152–169. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77272-9_10 CrossRefGoogle Scholar
  10. 10.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). doi: 10.1007/11499107_5 CrossRefGoogle Scholar
  12. 12.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  13. 13.
    Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2, 1–26 (2006)zbMATHGoogle Scholar
  14. 14.
    Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 409–420. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-04921-2_33 CrossRefGoogle Scholar
  15. 15.
    Heule, M.J.H., Hunt, W.A., Wetzler, N.: Expressing symmetry breaking in DRAT proofs. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 591–606. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21401-6_40 CrossRefGoogle Scholar
  16. 16.
    Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All About Proofs, Proofs for All (2015)Google Scholar
  17. 17.
    Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean Pythagorean Triples problem via cube-and-conquer. CoRR abs/1605.00723 (2016)Google Scholar
  18. 18.
    Heule, M.: March. Towards a lookahead SAT solver for general purposes. Master’s thesis (2004)Google Scholar
  19. 19.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31365-3_28 CrossRefGoogle Scholar
  20. 20.
    Laitinen, T.: Extending SAT solver with parity reasoning. Ph.D. thesis (2014)Google Scholar
  21. 21.
    Laitinen, T., Junttila, T., Niemelä, I.: Classifying and propagating parity constraints. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 357–372. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33558-7_28 CrossRefGoogle Scholar
  22. 22.
    Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31612-8_34 CrossRefGoogle Scholar
  23. 23.
    Manthey, N.: Riss 4.27. In: Belov et al. [4], pp. 65–67Google Scholar
  24. 24.
    Manthey, N., Lindauer, M.: SpyBug: automated bug detection in the configuration space of SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 554–561. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40970-2_36 CrossRefGoogle Scholar
  25. 25.
    Rebola-Pardo, A.: Unsatisfiability proofs in SAT solving with parity reasoning. Master thesis, Technische Universität Dresden, Informatik Fakultät (2015)Google Scholar
  26. 26.
    Roussel, O., Manquinho, V.M.: Pseudo-Boolean and cardinality constraints. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 695–733. IOS Press (2009)Google Scholar
  27. 27.
    Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: ICCAD 1996, pp. 220–227. IEEE Computer Society, Washington (1996)Google Scholar
  28. 28.
    Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006). doi: 10.1007/11753728_60 CrossRefGoogle Scholar
  29. 29.
    Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS 2010 (2010)Google Scholar
  30. 30.
    Soos, M.: Cryptominisat v4. In: Belov et al. [4], pp. 23–34Google Scholar
  31. 31.
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02777-2_24 CrossRefGoogle Scholar
  32. 32.
    Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-09284-3_31 Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.International Center for Computational LogicTechnische Universität DresdenDresdenGermany
  2. 2.TU WienWienAustria

Personalised recommendations