Pakota: A System for Enforcement in Abstract Argumentation

  • Andreas Niskanen
  • Johannes P. Wallner
  • Matti Järvisalo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10021)


In this paper we describe Pakota, a system implementation that allows for solving enforcement problems over argumentation frameworks. Via harnessing Boolean satisfiability (SAT) and maximum satisfiability (MaxSAT) solvers, Pakota implements algorithms for extension and status enforcement under various central AF semantics, covering a range of NP-complete—via direct MaxSAT encodings—and \(\mathrm{\Sigma }_{2}^{P}\)-complete—via MaxSAT-based counterexample-guided abstraction refinement—enforcement problems. We overview the algorithmic approaches implemented in Pakota, and describe in detail the system architecture, features, interfaces, and usage of the system. Furthermore, we present an empirical evaluation on the impact of the choice of MaxSAT solvers on the scalability of the system, and also provide benchmark generators for extension and status enforcement.


Truth Assignment Argumentation Framework Prefer Semantic Stable Semantic Benchmark Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: Proceedings of IJCAI, pp. 2677–2683. AAAI Press/IJCAI (2015)Google Scholar
  2. 2.
    Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: Proceedings of the IJCAI, pp. 283–289. AAAI Press/IJCAI (2015)Google Scholar
  3. 3.
    Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: Gomes, E., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 403–409. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of IJCAI, pp. 399–404. AAAI Press/IJCAI (2009)Google Scholar
  5. 5.
    Audemard, G., Simon, L.: GLUCOSE 2.1: aggressive - but reactive - clause database management, dynamic restarts. In: Pragmatics of SAT (Workshop of SAT 2012) (2012)Google Scholar
  6. 6.
    Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)CrossRefGoogle Scholar
  8. 8.
    Baumann, R.: What does it take to enforce an argument? minimal change in abstract argumentation. In: Proceedings of ECAI. Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 127–132. IOS Press (2012)Google Scholar
  9. 9.
    Baumann, R.: Normal and strong expansion equivalence for argumentation frameworks. Artif. Intell. 193, 18–44 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Baumann, R., Brewka, G.: AGM meets abstract argumentation: Expansion and revision for Dung frameworks. In: Proceedings of IJCAI, pp. 2734–2740. AAAI Press/IJCAI (2015)Google Scholar
  11. 11.
    Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proceedings of NMR, pp. 59–64 (2004)Google Scholar
  12. 12.
    Bisquert, P., Cayrol, C., Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Enforcement in argumentation is a kind of update. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 30–43. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40381-1_3 CrossRefGoogle Scholar
  13. 13.
    Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred extensions in abstract argumentation: A SAT-based approach. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS (LNAI), vol. 8306, pp. 176–193. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54373-9_12 CrossRefGoogle Scholar
  14. 14.
    Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: Solving argumentation problems using SAT. In: Proceedings of COMMA. Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 455–456. IOS Press (2014)Google Scholar
  15. 15.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided abstraction refinement. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 23(7), 1113–1123 (2004)CrossRefGoogle Scholar
  17. 17.
    Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: Extension enforcement in abstract argumentation as an optimization problem. In: Proceedings of IJCAI, pp. 2876–2882. AAAI Press (2015)Google Scholar
  18. 18.
    Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: On the revision of argumentation systems: Minimal change of arguments statuses. In: Proceedings of KR, pp. 52–61. AAAI Press (2014)Google Scholar
  19. 19.
    Coste-Marquis, S., Konieczny, S., Mailly, J.-G., Marquis, P.: A translation-based approach for revision of argumentation frameworks. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 397–411. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11558-0_28 Google Scholar
  20. 20.
    Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39071-5_13 CrossRefGoogle Scholar
  21. 21.
    Delobelle, J., Konieczny, S., Vesic, S.: On the aggregation of argumentation frameworks. In: Proceedings of IJCAI, pp. 2911–2917. AAAI Press/IJCAI (2015)Google Scholar
  22. 22.
    Diller, M., Haret, A., Linsbichler, T., Rümmele, S., Woltran, S.: An extension-based approach to belief revision in abstract argumentation. In: Proceedings of IJCAI, pp. 2926–2932. AAAI Press/IJCAI (2015)Google Scholar
  23. 23.
    Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  26. 26.
    Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argum. Comput. 1(2), 147–177 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: A modular MaxSAT solver,. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-09284-3_33 Google Scholar
  28. 28.
    Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: Robust core-guided MaxSAT solving. J. Satisf., Bool. Model. Comput. 9, 129–134 (2015)MathSciNetGoogle Scholar
  29. 29.
    Niskanen, A., Wallner, J.P., Järvisalo, M.: Optimal status enforcement in abstract argumentation. In: Proceedings of IJCAI. AAAI Press/IJCAI (2016)Google Scholar
  30. 30.
    Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument systems under preferred semantics. Artif. Intell. 207, 23–51 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms for abstract argumentation. Int. J. Approx. Reason. 78, 265–282 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40970-2_34 CrossRefGoogle Scholar
  33. 33.
    Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary report of the first international competition on computational models of argumentation. AI Mag. 37(1), 102 (2016)Google Scholar
  34. 34.
    Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for extension enforcement in abstract argumentation. In: Proceedings of the AAAI, pp. 1088–1094. AAAI Press (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Andreas Niskanen
    • 1
  • Johannes P. Wallner
    • 1
  • Matti Järvisalo
    • 1
  1. 1.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations