Advertisement

Efficient Reasoning for Inconsistent Horn Formulae

  • Joao Marques-SilvaEmail author
  • Alexey Ignatiev
  • Carlos Mencía
  • Rafael Peñaloza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10021)

Abstract

Horn formulae are widely used in different settings that include logic programming, answer set programming, description logics, deductive databases, and system verification, among many others. One concrete example is concept subsumption in lightweight description logics, which can be reduced to inference in propositional Horn formulae. Some problems require one to reason with inconsistent Horn formulae. This is the case when providing minimal explanations of inconsistency. This paper proposes efficient algorithms for a number of decision, function and enumeration problems related with inconsistent Horn formulae. Concretely, the paper develops efficient algorithms for finding and enumerating minimal unsatisfiable subsets (MUSes), minimal correction subsets (MCSes), but also for computing the lean kernel. The paper also shows the practical importance of some of the proposed algorithms.

Keywords

Description Logic Lean Kernel Deductive Database Horn Formula Definite Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arif, M.F., Mencía, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.: BEACON: an efficient SAT-based tool for debugging \({\cal EL}^{+}\) ontologies. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 521–530. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40970-2_32 CrossRefGoogle Scholar
  2. 2.
    Arif, M.F., Mencía, C., Marques-Silva, J.: Efficient axiom pinpointing with EL2MCS. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 225–233. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24489-1_17 CrossRefGoogle Scholar
  3. 3.
    Arif, M.F., Mencía, C., Marques-Silva, J.: Efficient MUS enumeration of horn formulae with applications to axiom pinpointing. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 324–342. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24318-4_24 CrossRefGoogle Scholar
  4. 4.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \({\cal EL}\) envelope. In: IJCAI, pp. 364–369 (2005)Google Scholar
  5. 5.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \({\cal EL}^{+}\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74565-5_7 CrossRefGoogle Scholar
  6. 6.
    Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a simple way of managing optional clauses. In: AAAI, pp. 835–841 (2014)Google Scholar
  7. 7.
    Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently compute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 70–86. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21668-3_5 CrossRefGoogle Scholar
  8. 8.
    Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving over-determined constraint satisfaction problems. In: IJCAI, pp. 276–281 (1993)Google Scholar
  9. 9.
    Bate, A., Motik, B., Grau, B.C., Simancik, F., Horrocks, I.: Extending consequence-based reasoning to SRIQ. In: KR, pp. 187–196 (2016)Google Scholar
  10. 10.
    Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  12. 12.
    Bjørner, N., Fioravanti, F., Rybalchenko, A., Senni, V. (eds.) Proceedings First Workshop on Horn Clauses for Verification and Synthesis, HCVS 2014, Vienna, Austria, 17 July 2014. EPTCS, vol. 169 (2014)Google Scholar
  13. 13.
    Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II: Essays Dedicated to Yuri Gurevich on the Occasion of his 75th Birthday. LNCS, vol. 9300, pp. 24–51. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23534-9_2 CrossRefGoogle Scholar
  14. 14.
    Buss, S.R., Krajíček, J., Takeuti, G.: Provably total functions in the bounded arithmetic theories \(R^i_3\), \(U^i_2\), and \(V^i_2\). In: Clote, P., Krajíček, J. (eds.) Arithmetic, Proof Theory, and Computational Complexity, pp. 116–161. OUP (1995)Google Scholar
  15. 15.
    Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. INFORMS J. Comput. 3(2), 157–168 (1991)CrossRefzbMATHGoogle Scholar
  16. 16.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Henschen, L.J., Wos, L.: Unit refutations and Horn sets. J. ACM 21(4), 590–605 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Horn, A.: On sentences which are true of direct unions of algebras. J. Symb. Log. 16(1), 14–21 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Itai, A., Makowsky, J.A.: Unification as a complexity measure for logic programming. J. Log. Program. 4(2), 105–117 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for monotone predicates. Artif. Intell. 233, 73–83 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial procedures to efficient reasoning with ontologies. J. Autom. Reasoning 53(1), 1–61 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, A., et al. [11], pp. 339–401Google Scholar
  25. 25.
    Kullmann, O.: Investigations on autark assignments. Discrete Appl. Math. 107(1–3), 99–137 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kullmann, O.: On the use of autarkies for satisfiability decision. Electron. Notes Discrete Math. 9, 231–253 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive normal forms: minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer, Heidelberg (2006). doi: 10.1007/11814948_4 CrossRefGoogle Scholar
  28. 28.
    Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and simple oracle queries. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 138–155. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24318-4_11 CrossRefGoogle Scholar
  29. 29.
    Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds in MaxSAT. Constraints 15(4), 456–484 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–232 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Liberatore, P.: Redundancy in logic II: 2CNF and Horn propositional formulae. Artif. Intell. 172(2–3), 265–299 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Manthey, N., Peñaloza, R., Rudolph, S.: Efficient axiom pinpointing in \({\cal EL}\) using SAT technology. In: DL (2016)Google Scholar
  33. 33.
    Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: IJCAI, pp. 615–622 (2013)Google Scholar
  34. 34.
    Marques-Silva, J., Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I.: Efficient autarkies. In: ECAI, pp. 603–608 (2014)Google Scholar
  35. 35.
    Mencía, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sublinear oracle queries. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 342–360. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40970-2_21 CrossRefGoogle Scholar
  36. 36.
    Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: IJCAI, pp. 1973–1979 (2015)Google Scholar
  37. 37.
    Minoux, M.: LTUR: a simplified linear-time unit resolution algorithm for Horn formulae and computer implementation. Inf. Process. Lett. 29(1), 1–12 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Monien, B., Speckenmeyer, E.: Solving satisfiability in less than \(2^{n}\) steps. Discrete Appl. Math. 10(3), 287–295 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Redwood City (1993)zbMATHGoogle Scholar
  40. 40.
    Papadimitriou, C.H.: NP-completeness: a retrospective. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 2–6. Springer, Heidelberg (1997). doi: 10.1007/3-540-63165-8_160 CrossRefGoogle Scholar
  41. 41.
    Peñaloza, R.: Axiom-pinpointing in description logics and beyond. Ph.D. thesis, Dresden University of Technology, Germany (2009)Google Scholar
  42. 42.
    Peñaloza, R., Sertkaya, B.: On the complexity of axiom pinpointing in the \({\cal EL}\) family of description logics. In: KR (2010)Google Scholar
  43. 43.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics via Horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 84–99. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02959-2_6 CrossRefGoogle Scholar
  45. 45.
    Sebastiani, R., Vescovi, M.: Axiom pinpointing in large \({\cal EL}^{+}\) ontologies via SAT and SMT techniques. Technical report DISI-15-010, DISI, University of Trento, Italy. http://disi.unitn.it/~rseba/elsat/elsat_techrep.pdf
  46. 46.
    Vescovi, M.: Exploiting SAT and SMT techniques for automated reasoning and ontology manipulation in description logics. Ph.D. thesis, University of Trento (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Joao Marques-Silva
    • 1
    Email author
  • Alexey Ignatiev
    • 1
    • 4
  • Carlos Mencía
    • 2
  • Rafael Peñaloza
    • 3
  1. 1.University of LisbonLisbonPortugal
  2. 2.University of OviedoOviedoSpain
  3. 3.Free University of Bozen-BolzanoBolzanoItaly
  4. 4.ISDCT SB RASIrkutskRussia

Personalised recommendations