Decidability and Expressivity of Ockhamist Propositional Dynamic Logics

  • Joseph Boudou
  • Emiliano Lorini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10021)


Ockhamist Propositional Dynamic Logic (\(\mathsf {OPDL}\)) is a logic unifying the family of dynamic logics and the family of branching-time temporal logics, two families of logic widely used in AI to model reactive systems and multi-agent systems (MAS). In this paper, we present two variants of this logic. These two logics share the same language and differ only in one semantic condition. The first logic embeds Bundled \(\textsf {CTL}^* \) while the second embeds \(\textsf {CTL}^* \). We provide a 2EXPTIME decision procedure for the satisfiability problem of each variant. The decision procedure for the first variant of \(\mathsf {OPDL}\) is based on the elimination of Hintikka sets while the decision procedure for the second variant relies on automata.


Decision Procedure Syntactic Structure Dynamic Logic Satisfiability Problem Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balbiani, P., Lorini, E.: Ockhamist propositional dynamic logic: a natural link between PDL and CTL*. In: Libkin, L., Kohlenbach, U., Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 251–265. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39992-3_22 Google Scholar
  3. 3.
    Belnap, N., Perloff, M., Xu, M.: Facing the Future: Agents and Choices in Our Indeterminist World. Oxford University Press, New York (2001)Google Scholar
  4. 4.
    Brown, M., Goranko, V.: An extended branching-time Ockhamist temporal logic. J. Logic Lang. Inform. 8(2), 143–166 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dam, M.: CTL* and ECTL* as fragments of the modal mu-calculus. Theoret. Comput. Sci. 126(1), 77–96 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    David, A., Schewe, S.: Deciding ATL\(^*\) satisfiability by tableaux. Technical report, Laboratoire IBISC - Université d’Evry Val-d’Essonne (2016)Google Scholar
  7. 7.
    Emerson, E., Sistla, A.: Deciding full branching time logic. Inf. Control 61, 175–201 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 11.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: Logic in Computer Science (LICS), pp. 255–264. IEEE Computer Society (2006)Google Scholar
  12. 12.
    Pratt, V.R.: Models of program logics. In: 20th Annual Symposium on Foundations of Computer Science, pp. 115–122. IEEE Computer Society (1979)Google Scholar
  13. 13.
    Prior, A.: Past, Present, and Future. Clarendon Press, Oxford (1967)CrossRefzbMATHGoogle Scholar
  14. 14.
    Reynolds, M.: An axiomatization of full computation tree logic. J. Symbol. Logic 66(3), 1011–1057 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Reynolds, M.: A tableau for bundled CTL*. J. Logic Comput. 17(1), 117–132 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Inf. Control 54(1–2), 121–141 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Thomason, R.: Combinations of tense and modality. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, 2nd edn, pp. 135–165. Reidel, Dordrecht (1984)CrossRefGoogle Scholar
  18. 18.
    Vardi, M.Y., Wolper, P.: Yet another process logic (preliminary version). In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 501–512. Springer, Heidelberg (1984). doi: 10.1007/3-540-12896-4_383 CrossRefGoogle Scholar
  19. 19.
    Wolper, P.: A translation from full branching time temporal logic to one letter propositional dynamic logic with looping (unpublished manuscript)Google Scholar
  20. 20.
    Zanardo, A.: Branching-time logic with quantification over branches: the point of view of modal logic. J. Symbol. Logic 61(1), 143–166 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.IRIT-CNRS, Toulouse UniversityToulouseFrance

Personalised recommendations