The Mixed Center Location Problem

  • Yi Xu
  • Jigen Peng
  • Yinfeng Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10043)


This paper studies a new version of the location problem called the mixed center location problem. Let P be a set of n points in the plane. We first consider the mixed 2-center problem where one of the centers must be in P and solve it in \(O(n^2\log n)\) time. Next we consider the mixed k-center problem where m of the centers are in P. Motivated by two practical constraints, we propose two variations of the problem. We present an exact algorithm, a 2-approximation algorithm and a heuristic algorithm solving the mixed k-center problem. The time complexity of the exact algorithm is \(O(n^{m+O(\sqrt{k-m})})\).


k-center problem Facility location problem Voronoi diagram Computational geometry 


  1. 1.
    Jaromczyk, J., Kowaluk, M.: An efficient algorithm for the Euclidean two-center problem. In: Proceedings 10th ACM Symposium on Computational Geometry, pp. 303–311 (1994)Google Scholar
  2. 2.
    Eppstein, D.: Faster construction of planar two-centers. In: Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, pp. 131–138 (1997)Google Scholar
  3. 3.
    Sharir, M.: A near-linear algorithm for the planar 2-center problem. Discret. Comput. Geom. 18, 125–134 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chan, T.M.: More planar two-center algorithms. Comput. Geom. Theory Appl. 13, 189–198 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hershberger, J.: A faster algorithm for the two-center decision problem. Inform. Process. Lett. 47, 23–29 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hershberger, J., Suri, S.: Finding tailored partitions. J. Algorithms 12, 431–463 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Agarwal, P.K., Sharir, M., Welzl, E.: The discrete 2-center problem. Discret. Comput. Geom. 20, 287–305 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Megiddo, N., Supowit, K.: On the complexity of some common geometric location problems. SIAM J. Comput. 13, 1182–1196 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Drezener, Z.: The p-center problem-heuristics and optimal algorithms. J. Oper. Res. Soc. 35, 741–748 (1984)Google Scholar
  10. 10.
    Megiddo, N.: Linear-time algorithms for the linear programming in \(R^3\) and related problems. SIAM J. Comput. 12, 759–776 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hwang, R.Z., Lee, R.C.T., Chang, R.C.: The slab dividing approach to solve the Euclidean p-center problem. Algorithmica 9, 1–22 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceedings of the 20th ACM Symposium on Theory of Computing, pp. 434–444 (1988)Google Scholar
  15. 15.
    Nagarajan, V., Schieber, B., Shachnai, H.: The Euclidean k-supplier problem. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 290–301. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Company, Singapore (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Beijing Center for Mathematics and Information Interdisciplinary SciencesBeijingPeople’s Republic of China
  3. 3.School of ManagementXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  4. 4.The State Key Lab for Manufacturing Systems EngineeringXi’anPeople’s Republic of China

Personalised recommendations