Cliques in Regular Graphs and the Core-Periphery Problem in Social Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10043)


The existence of a densely knit core surrounded by a loosely connected periphery is a common macro-structural feature of social networks. Formally, the CorePeriphery problem is to partition the nodes of an undirected graph \(G=(V,E)\) such that a subset \(X\subset V\), the core, induces a dense subgraph, and its complement \(V\!\setminus \!X\), the periphery, induces a sparse subgraph. Split graphs represent the ideal case in which the core induces a clique and the periphery forms an independent set. The number of missing and superfluous edges in the core and the periphery, respectively, can be minimized in linear time via edit distance to the closest split graph.

We show that the CorePeriphery becomes intractable for standard notions of density other than the absolute number of misclassified pairs. Our main tool is a regularization procedure that transforms a given graph with maximum degree d into a d-regular graph with the same clique number by adding at most \(d\cdot n\) new nodes. This is of independent interest because it implies that finding a maximum clique in a regular graph is NP-hard to approximate to within a factor of \(n^{1/2-\varepsilon }\) for all \(\varepsilon >0\).


  1. 1.
    Alba, R.D., Moore, G.: Elite social circles. Sociol. Methods Res. 7(2), 167–188 (1978)CrossRefGoogle Scholar
  2. 2.
    Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000)CrossRefGoogle Scholar
  3. 3.
    Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for windows: software for social network analysis (2002)Google Scholar
  4. 4.
    Boyd, J.P., Fitzgerald, W.J., Beck, R.J.: Computing core/periphery structures and permutation tests for social relations data. Soc. Netw. 28(2), 165–178 (2006)CrossRefGoogle Scholar
  5. 5.
    Chase-Dunn, C.K.: Global Formation: Structures of the World-Economy. Rowman & Littlefield, Lanham (1998)Google Scholar
  6. 6.
    Corradino, C.: Proximity structure in a captive colony of Japanese monkeys (macaca fuscata fuscata): an application of multidimensional scaling. Primates 31(3), 351–362 (1990)CrossRefGoogle Scholar
  7. 7.
    Darlay, J., Brauner, N., Moncel, J.: Dense and sparse graph partition. Discrete Appl. Math. 160(16), 2389–2396 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Doreian, P.: Structural equivalence in a psychology journal network. J. Am. Soc. Inf. Sci. 36(6), 411–417 (1985)CrossRefGoogle Scholar
  9. 9.
    Faulkner, R.R.: Music on Demand. Transaction Publishers, Piscataway (1983)Google Scholar
  10. 10.
    Goldberg, A.V.: Finding a maximum density subgraph. University of California Berkeley, CA (1984)Google Scholar
  11. 11.
    Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–284 (1981)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Holme, P.: Core-periphery organization of complex networks. Phys. Rev. E 72(4), 046111 (2005)CrossRefGoogle Scholar
  13. 13.
    Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182, 105–142 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Krugman, P.: The self-organizing economy. Number 338.9 KRU 1996. CIMMYT (1996)Google Scholar
  16. 16.
    Laumann, E.O., Pappi, U.: Networks of collective actions, New York (1976)Google Scholar
  17. 17.
    Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph problems andgeneralizations. In: Proceedings of the Fourteenth Symposium on Computing: The Australasian Theory - Volume 77, CATS 2008, pp. 79–86, Darlinghurst, Australia. Australian Computer Society Inc. (2008)Google Scholar
  18. 18.
    Mintz, B., Schwartz, M.: Interlocking directorates and interest group formation. Am. Sociol. Rev. 46, 851–869 (1981)CrossRefGoogle Scholar
  19. 19.
    Mullins, N.C., Hargens, L.L., Hecht, P.K., Kick, E.L.: The group structure of cocitation clusters: a comparative study. Am. Sociol. Rev. 42, 552–562 (1977)CrossRefGoogle Scholar
  20. 20.
    Nemeth, R.J., Smith, D.A.: International trade and world-system structure: a multiple network analysis. Rev. (Fernand Braudel Center) 8(4), 517–560 (1985)Google Scholar
  21. 21.
    Rombach, M.P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure in networks. SIAM J. Appl. Math. 74(1), 167–190 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Smith, D.A., White, D.R.: Structure and dynamics of the global economy: network analysis of international trade 1965–1980. Soc. Forces 70(4), 857–893 (1992)CrossRefGoogle Scholar
  23. 23.
    Snyder, D., Kick, E.L.: Structural position in the world system, economic growth, 1955–1970: a multiple-network analysis of transnational interactions. Am. J. Sociol. 84, 1096–1126 (1979)CrossRefGoogle Scholar
  24. 24.
    Steiber, S.R.: The world system and world trade: an empirical exploration of conceptual conflicts. Sociol. Q. 20(1), 23–36 (1979)CrossRefGoogle Scholar
  25. 25.
    Wallerstein, I.: The Modern World-System I: Capitalist Agriculture and the Origins of the European World-Economy in the Sixteenth Century, with a New Prologue, vol. 1. University of California Press, Berkeley (2011)Google Scholar
  26. 26.
    Zhang, X., Martin, T., Newman, M.E.: Identification of core-periphery structure in networks. Phys. Rev. E 91(3), 032803 (2015)CrossRefGoogle Scholar
  27. 27.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 681–690. ACM, New York (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Eugenia Holm
    • 1
  • Andreas Karrenbauer
    • 2
  1. 1.Department of Computer & Information ScienceUniversity of KonstanzKonstanzGermany
  2. 2.Max Planck Institute for InformaticsSaarbrückenGermany

Personalised recommendations