Use of Emerging 3D Printing and Modeling Technologies in the Health Domain

A Systematic Literature Review
  • Carolina Ávila
  • Gustavo LópezEmail author
  • Gabriela Marín
  • Lisbeth Salazar
  • Zaray Miranda
  • Jessica González
  • Brian Brenes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10069)


Three-Dimensional (3D) technologies emerged from the technological advances in manufacturing required to produce physical versions of digital models. The most attractive feature of 3D technologies is that virtual models are easy to mold, and custom-made items can be physically produced. Health domains are areas in which 3D technologies have been applied, and several studies have been conducted assessing the usefulness of such technologies in those domains. In this paper we present the results of a Systematic Literature Review (SLR) on the applications of 3D technologies in the health domain. Discussion from the revision of 33 papers is presented. The main finding of this SLR is that none of the available research papers are focused on computer science related areas (i.e., all papers are published by doctors or researchers in Medicine). Moreover, all the included papers were published in journals specialized in Medicine. Therefore, they do not delve in the computational conclusions of the studies. In this article, we identified significant research gaps (from the computational perspective), as well as new ideas are being proposed on the future of 3D technologies in health.


3D printing Health education Health training 3D technologies medical applications 



This project was partially funded by VINV at UCR. Grant No. 834-B6-076.


  1. 1.
    Quijano Blanco, Y., Rodríguez, M.F.C., Peralta R.K., Cortés C.S.: Polyester resin bone replica, as didactic tool for anatomy learning. Rev. U.D.C.A Actual. Divulg. Científica. 15(2), 275–281 (2012)Google Scholar
  2. 2.
    Malik, H.H., Darwood, A.R.J., Shaunak, S., Kulatilake, P., El-Hilly, A.A., Mulki, O., Baskaradas, A.: Three-dimensional printing in surgery: a review of current surgical applications. J. Surg. Res. 199, 512–522 (2015)CrossRefGoogle Scholar
  3. 3.
    AlAli, A.B., Griffin, M.F., Butler, P.E.: Three-dimensional printing surgical applications. Eplasty 15, e37 (2015)Google Scholar
  4. 4.
    Martelli, N., Serrano, C., Van Den Brink, H., Pineau, J., Prognon, P., Borget, I., El Batti, S.: Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surg. (United States) 159, 1485–1500 (2016)Google Scholar
  5. 5.
    Vakharia, V.N., Vakharia, N.N., Hill, C.S.: Review of 3-dimensional printing on cranial neurosurgery simulation training. World Neurosurg. 88, 188–198 (2016)CrossRefGoogle Scholar
  6. 6.
    Marro, A., Bandukwala, T., Mak, W.: Three-dimensional printing and medical imaging: a review of the methods and applications. Curr. Probl. Diagn. Radiol. 45, 2–9 (2016)CrossRefGoogle Scholar
  7. 7.
    Banoriya, D., Purohit, R., Dwivedi, R.K.: Modern trends in rapid prototyping for biomedical applications. Mater. Today Proc. 2, 3409–3418 (2015)CrossRefGoogle Scholar
  8. 8.
    Vázquez, P.P., Götzelmann, T., Hartmann, K., Nürnberger, A., Vázquez, P.P., Tzelmann, G.T., Hartmann, K., Rnberger, A.: An interactive 3D framework for anatomical education. Int. J. Comput. Assist. Radiol. Surg. 3, 511–524 (2008)CrossRefGoogle Scholar
  9. 9.
    Seitel, M., Maier-Hein, L., Seitel, A., Franz, A.M., Kenngott, H., De Simone, R., Wolf, I., Meinzer, H.P.: RepliExplore: Coupling physical and virtual anatomy models. Int. J. Comput. Assist. Radiol. Surg. 4, 417–424 (2009)CrossRefGoogle Scholar
  10. 10.
    Bustamante, S., Bose, S., Bishop, P., Klatte, R., Norris, F.: Novel application of rapid prototyping for simulation of bronchoscopic anatomy. J. Cardiothorac. Vasc. Anesth. 28, 1122–1125 (2014)CrossRefGoogle Scholar
  11. 11.
    Schrot, J., Pietila, T., Sahu, A.: State of the art: 3D printing for creating compliant patient-specific congenital heart defect models. J. Cardiovasc. Magn. Reson. 16, W19 (2014)CrossRefGoogle Scholar
  12. 12.
    Jardini, A.L., Larosa, M.A., Filho, R.M., Zavaglia, C.A.D.C., Bernardes, L.F., Lambert, C.S., Calderoni, D.R., Kharmandayan, P.: Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J. Cranio-Maxillofacial Surg. 42, 1877–1884 (2014)CrossRefGoogle Scholar
  13. 13.
    Hochman, J.B., Unger, B., Kraut, J., Pisa, J., Hombach-Klonisch, S.: Gesture-controlled interactive three dimensional anatomy: a novel teaching tool in head and neck surgery. J. Otolaryngol. - head neck Surg. 43, 38 (2014)CrossRefGoogle Scholar
  14. 14.
    Waran, V., Narayanan, V., Karuppiah, R., Pancharatnam, D., Chandran, H., Raman, R., Rahman, Z.A.A., Owen, S.L.F., Aziz, T.Z.: Injecting realism in surgical training - Initial simulation experience with custom 3D models. J. Surg. Educ. 71, 193–197 (2014)CrossRefGoogle Scholar
  15. 15.
    Watson, R.A.: A low-cost surgical application of additive fabrication. J. Surg. Educ. 71, 14–17 (2014)CrossRefGoogle Scholar
  16. 16.
    Rubino, P.A., Bottan, J.S., Houssay, A., Salas López, E., Bustamante, J., Chiarullo, M., Lambre, J.: Three-dimensional imaging as a teaching method in anterior circulation aneurysm surgery. World Neurosurg. 82, E467–E474 (2014)CrossRefGoogle Scholar
  17. 17.
    Giannopoulos, A.A., Chepelev, L., Sheikh, A., Wang, A., Dang, W., Akyuz, E., Hong, C., Wake, N., Pietila, T., Dydynski, P.B., Mitsouras, D., Rybicki, F.J.: 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing. 3D Print. Med. 1, 1–20 (2015)CrossRefGoogle Scholar
  18. 18.
    Cai, T., Rybicki, F.J., Giannopoulos, A.A., Schultz, K., Kumamaru, K.K., Liacouras, P., Demehri, S., Shu Small, K.M., Mitsouras, D.: The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Print. Med. 1, 1–19 (2015)CrossRefGoogle Scholar
  19. 19.
    Cohen, J., Reyes, S.A.: Creation of a 3D Printed Temporal Bone Model from Clinical CT Data. Am. J. Otolaryngol. 36, 1–6 (2015)CrossRefGoogle Scholar
  20. 20.
    Wake, N., Chandarana, H., Huang, W.C., Taneja, S.S., Rosenkrantz, A.B.: Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology. Clin. Radiol. 71, 3–7 (2015)Google Scholar
  21. 21.
    Rose, A.S., Webster, C.E., Harrysson, O.L.A., Formeister, E.J., Rawal, R.B., Iseli, C.E.: Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models. Int. J. Pediatr. Otorhinolaryngol. 79, 740–744 (2015)CrossRefGoogle Scholar
  22. 22.
    Valverde, I., Gomez, G., Suarez-mejias, C., Hosseinpour, A., Hazekamp, M., Roest, A., Vazquez-jimenez, J.F., El-rassi, I., Uribe, S., Gomez-cia, T.: 3D printed cardiovascular models for surgical planning in complex congenital heart diseases. J. Cardiovasc. Magn. Reson. 17, P196 (2015)CrossRefGoogle Scholar
  23. 23.
    Li, C., Yang, M., Xie, Y., Chen, Z., Wang, C., Bai, Y., Zhu, X., Li, M.: Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J. Orthop. Sci. 20, 475–480 (2015)CrossRefGoogle Scholar
  24. 24.
    Sutradhar, A., Park, J., Carrau, D., Nguyen, T.H., Miller, M.J., Paulino, G.H.: Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med. Biol. Eng. Comput. 54, 1–13 (2015)Google Scholar
  25. 25.
    Fredieu, J.R., Kerbo, J., Herron, M., Klatte, R., Cooke, M.: Anatomical models: a digital revolution. Med. Sci. Educ. 25, 183–194 (2015)CrossRefGoogle Scholar
  26. 26.
    Mitsopoulou, V., Michailidis, D., Theodorou, E., Isidorou, S., Roussiakis, S., Vasilopoulos, T., Polydoras, S., Kaisarlis, G., Spitas, V., Stathopoulou, E., Provatidis, C., Theodorou, G.: Digitizing, modelling and 3D printing of skeletal digital models of Palaeoloxodon tiliensis (Tilos, Dodecanese, Greece). Quat. Int. 379, 4–13 (2015)CrossRefGoogle Scholar
  27. 27.
    Fasel, J.H.D., Aguiar, D., Kiss-Bodolay, D., Montet, X., Kalangos, A., Stimec, B.V., Ratib, O.: Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies. Surg. Radiol. Anat. 38, 361–367 (2016)CrossRefGoogle Scholar
  28. 28.
    Knoedler, M., Feibus, A.H., Lange, A., Maddox, M.M., Ledet, E., Thomas, R., Silberstein, J.L.: Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding. Urology 85, 1257–1261 (2015)CrossRefGoogle Scholar
  29. 29.
    Mashiko, T., Otani, K., Kawano, R., Konno, T., Kaneko, N., Ito, Y., Watanabe, E.: Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 83, 351–361 (2015)CrossRefGoogle Scholar
  30. 30.
    Ryan, J.R., Chen, T., Nakaji, P., Frakes, D.H., Gonzalez, L.F.: Ventriculostomy simulation using patient-specific ventricular anatomy, 3D printing, and hydrogel casting. World Neurosurg. 84, 1333–1339 (2015)CrossRefGoogle Scholar
  31. 31.
    Wen, G., Cong, Z.X., Liu, K.D., Tang, C., Zhong, C., Li, L., Dai, X.J., Ma, C.: A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills. Child’s Nerv. Syst. 32, 1–8 (2016)CrossRefGoogle Scholar
  32. 32.
    Rehder, R., Abd-El-Barr, M., Hooten, K., Weinstock, P., Madsen, J.R., Cohen, A.R.: The role of simulation in neurosurgery. Child’s Nerv. Syst. 32, 43–54 (2016)CrossRefGoogle Scholar
  33. 33.
    Singhal, A.J., Shetty, V., Bhagavan, K.R., Ragothaman, A., Shetty, V., Koneru, G., Agarwala, M.: Improved surgery planning using 3-D printing: a case study. Indian J. Surg. 78, 100–104 (2016)CrossRefGoogle Scholar
  34. 34.
    Zheng, Y.-X., Yu, D.-F., Zhao, J.-G., Wu, Y.-L., Zheng, B.: 3D printout models vs. 3D-rendered images: which is better for preoperative planning? J. Surg. Educ. 73, 518–523 (2016)CrossRefGoogle Scholar
  35. 35.
    Kong, X., Nie, L., Zhang, H., Wang, Z., Ye, Q., Tang, L., Li, J., Huang, W.: Do three-dimensional visualization and three-dimensional printing improve hepatic segment anatomy teaching? a randomized controlled study. J. Surg. Educ. 73, 264–269 (2016)CrossRefGoogle Scholar
  36. 36.
    Pietrabissa, A., Marconi, S., Peri, A., Pugliese, L., Cavazzi, E., Vinci, A., Botti, M., Auricchio, F.: From CT scanning to 3-D printing technology for the preoperative planning in laparoscopic splenectomy. Surg. Endosc. 30, 366–371 (2016)CrossRefGoogle Scholar
  37. 37.
    Krauel, L., Fenollosa, F., Riaza, L., Pérez, M., Tarrado, X., Morales, A., Gomà, J., Mora, J.: Use of 3D prototypes for complex surgical oncologic cases. World J. Surg. 40, 889–894 (2016)CrossRefGoogle Scholar
  38. 38.
    Bernhard, J.C., Isotani, S., Matsugasumi, T., Duddalwar, V., Hung, A.J., Suer, E., Baco, E., Satkunasivam, R., Djaladat, H., Metcalfe, C., Hu, B., Wong, K., Park, D., Nguyen, M., Hwang, D., Bazargani, S.T., de Castro Abreu, A.L., Aron, M., Ukimura, O., Gill, I.S.: Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J. Urol. 34, 337–345 (2016)CrossRefGoogle Scholar
  39. 39.
    Ploch, C.C., Mansi, C.S.S.A., Jayamohan, J., Kuhl, E.: Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg. 91, 1–7 (2016)CrossRefGoogle Scholar
  40. 40.
    Ryan, J.R., Almefty, K.K., Nakaji, P., Frakes, D.H.: Cerebral aneurysm clipping surgery simulation using patient-specific 3d printing and silicone casting. World Neurosurg. 88, 175–181 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Carolina Ávila
    • 1
  • Gustavo López
    • 1
    Email author
  • Gabriela Marín
    • 1
  • Lisbeth Salazar
    • 2
  • Zaray Miranda
    • 2
  • Jessica González
    • 2
  • Brian Brenes
    • 2
  1. 1.Research Center for ICTUniversity of Costa RicaSan JoséCosta Rica
  2. 2.School of MedicineUniversity of Costa RicaSan JoséCosta Rica

Personalised recommendations