Diversifying the Results of Keyword Queries on Linked Data

  • Ananya Dass
  • Cem Aksoy
  • Aggeliki Dimitriou
  • Dimitri Theodoratos
  • Xiaoying Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10041)

Abstract

Keyword search is a popular technique for retrieving information from the ever growing repositories of RDF graph data on the Web. However, keyword queries are inherently ambiguous, resulting in an overwhelming number of candidate results. These results correspond to different interpretations of the query. Most of the current keyword search approaches ignore the diversity of the result interpretations and might fail to provide a broad overview of the query aspects to the users who are interested in exploratory search. To address this issue, we introduce in this paper, a novel technique for diversifying keyword search results on RDF graph data. We generate pattern graphs which are structured queries corresponding to alternative interpretations of the given keyword query. We model the problem as an optimization problem aiming at selecting a set of k pattern graphs with maximum diversity. We devise a metric to estimate the diversity of a set of pattern graphs, and we design an algorithm that employs a greedy heuristic to generate a diverse list of k pattern graphs for a given keyword query.

References

  1. 1.
    Achiezra, H., Golenberg, K., Kimelfeld, B., Sagiv, Y.: Exploratory keyword search on data graphs. In: SIGMOD, pp. 1163–1166 (2010)Google Scholar
  2. 2.
    Agrawal, R., Gollapudi, S., Halverson, A., Leong, S.: Diversifying search results. In: WSDM, pp. 5–14. ACM (2009)Google Scholar
  3. 3.
    Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D.: Exploiting semantic result clustering to support keyword search on linked data. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8786, pp. 448–463. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11749-2_34 Google Scholar
  4. 4.
    Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D.: Keyword pattern graph relaxation for selective result space expansion on linked data. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 287–306. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19890-3_19 CrossRefGoogle Scholar
  5. 5.
    Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W., Divq: diversification for keyword search over structured databases. In: SIGIR, pp. 331–338. ACM (2010)Google Scholar
  6. 6.
    Drosou, M., Pitoura, E.: Search result diversification. ACM SIGMOD Rec. 39(1), 41–47 (2010)CrossRefGoogle Scholar
  7. 7.
    Hasan, M., Mueen, A., Tsotras, V., Keogh, E.: Diversifying query results on semi-structured data. In: CIKM, pp. 2099–2103. ACM (2012)Google Scholar
  8. 8.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In:ICDE (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ananya Dass
    • 1
  • Cem Aksoy
    • 1
  • Aggeliki Dimitriou
    • 2
  • Dimitri Theodoratos
    • 1
  • Xiaoying Wu
    • 3
  1. 1.New Jersey Institute of TechnologyNewarkUSA
  2. 2.National Technical University of AthensAthensGreece
  3. 3.Wuhan UniversityWuhanChina

Personalised recommendations