The Gastrointestinal Tract

  • Young Kim
  • Timothy A. Pritts


The average life expectancy in the United States is 80 years [1]. With advances in healthcare extending the length and quality of our lives, injuries in the geriatric population continue to be increasingly common. This population harbors multiple medical comorbidities and a decreased physiologic reserve, resulting in higher morbidity and mortality rates following acute trauma [2]. Gastrointestinal injury and illness can be especially devastating among the elderly. The following discussion highlights age-related changes in gastrointestinal physiology, the management of gastrointestinal injury, and other common gastrointestinal diseases affecting the elderly.


Gastrointestinal tract GI tract Geriatric Elderly Ileus Ogilvie syndrome 



American Association for the Surgery of Trauma


Advanced Trauma Life Support




Clostridium difficile infection

CT scan

Computed tomography scan


Deoxyribonucleic acid


Eastern Association for the Surgery of Trauma


Enteric nervous system


Focused assessment with sonography for trauma




Hematopoietic stem cells


Intensive care unit


Infectious Diseases Society of America


Length of stay

NK cell

Natural killer cell


Nonsteroidal anti-inflammatory drug


Organ injury scale


Society for Healthcare Epidemiology of America


Toll-like receptor


Venous thromboembolic event


  1. 1.
    Life expectancy at birth. World Health Organization. 2016. Accessed 18 Feb 2016.
  2. 2.
    Hashmi A, Ibrahim-Zada I, Rhee P, Aziz H, Fain MJ, Friese RS, et al. Predictors of mortality in geriatric trauma patients: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2014;76:894–901.CrossRefPubMedGoogle Scholar
  3. 3.
    Bitar K, Greenwood-Van Meerveld B, Saad R, Wiley JW. Aging and gastrointestinal neuromuscular function: insights from within and outside the gut. Neurogastroenterol Motil. 2011;23:490–501.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Besanko LK, Burgstad CM, Mountifield R, Andrews JM, Heddle R, Checklin H, et al. Lower esophageal sphincter relaxation is impaired in older patients with dysphagia. World J Gastroenterol. 2011;17:1326–31.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Besanko LK, Burgstad CM, Cock C, Heddle R, Fraser A, Fraser RJ. Changes in esophageal and lower esophageal sphincter motility with healthy aging. J Gastrointestin Liver Dis. 2014;23:243–8.PubMedGoogle Scholar
  6. 6.
    Britton E, McLaughlin JT. Ageing and the gut. Proc Nutr Soc. 2013;72:173–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Gabella G. Fall in the number of myenteric neurons in aging guinea pigs. Gastroenterology. 1989;96:1487–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Gabella G. Development and ageing of intestinal musculature and nerves: the guinea-pig taenia coli. J Neurocytol. 2001;30:733–66.CrossRefPubMedGoogle Scholar
  9. 9.
    McDougal JN, Miller MS, Burks TF, Kreulen DL. Age-related changes in colonic function in rats. Am J Phys. 1984;247:G542–6.Google Scholar
  10. 10.
    Gomes OA, de Souza RR, Liberti EA. A preliminary investigation of the effects of aging on the nerve cell number in the myenteric ganglia of the human colon. Gerontology. 1997;43:210–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Hanani M, Fellig Y, Udassin R, Freund HR. Age-related changes in the morphology of the myenteric plexus of the human colon. Auton Neurosci. 2004;113:71–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Di Lorenzo C, Flores AF, Hyman PE. Age-related changes in colon motility. J Pediatr. 1995;127:593–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Madsen JL, Graff J. Effects of ageing on gastrointestinal motor function. Age Ageing. 2004;33:154–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Rao SS, Go JT. Update on the management of constipation in the elderly: new treatment options. Clin Interv Aging. 2010;5:163–71.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Goldstein AM, Hofstra RM, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet. 2013;83:307–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Barlow AJ, Wallace AS, Thapar N, Burns AJ. Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation. Development. 2008;135:1681–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Foong JP, Nguyen TV, Furness JB, Bornstein JC, Young HM. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol. 2012;590:2375–90.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pasternak A, Szura M, Gil K, Matyja A. Interstitial cells of Cajal (ICC) – systematic review. Folia Morphol (Warsz). 2016; doi: 10.5603/FM.a2016.0002.Google Scholar
  19. 19.
    O’Mahony D, O’Leary P, Quigley EM. Aging and intestinal motility: a review of factors that affect intestinal motility in the aged. Drugs Aging. 2002;19:515–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Saffrey MJ. Aging of the mammalian gastrointestinal tract: a complex organ system. Age (Dordr). 2014;36:9603.CrossRefGoogle Scholar
  21. 21.
    Saffrey MJ. Cellular changes in the enteric nervous system during ageing. Dev Biol. 2013;382:344–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Wiskur B, Greenwood-Van MB. The aging colon: the role of enteric neurodegeneration in constipation. Curr Gastroenterol Rep. 2010;12:507–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Bernard CE, Gibbons SJ, Gomez-Pinilla PJ, Lurken MS, Schmalz PF, Roeder JL, et al. Effect of age on the enteric nervous system of the human colon. Neurogastroenterol Motil. 2009;21:746–e46.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gomez-Pinilla PJ, Gibbons SJ, Sarr MG, Kendrick ML, Shen KR, Cima RR, et al. Changes in interstitial cells of cajal with age in the human stomach and colon. Neurogastroenterol Motil. 2011;23:36–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Bitar KN, Patil SB. Aging and gastrointestinal smooth muscle. Mech Ageing Dev. 2004;125:907–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Tarnawski AS, Ahluwalia A, Jones MK. Increased susceptibility of aging gastric mucosa to injury: the mechanisms and clinical implications. World J Gastroenterol. 2014;20:4467–82.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Laine L, Takeuchi K, Tarnawski A. Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterol. 2008;135:41–60.CrossRefGoogle Scholar
  28. 28.
    Tarnawski AS, Ahluwalia A, Jones MK. The mechanisms of gastric mucosal injury: focus on microvascular endothelium as a key target. Curr Med Chem. 2012;19:4–15.CrossRefPubMedGoogle Scholar
  29. 29.
    Cryer B, Lee E, Feldman M. Factors influencing gastroduodenal mucosal prostaglandin concentrations: roles of smoking and aging. Ann Intern Med. 1992;116:636–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Feldman M, Cryer B. Effects of age on gastric alkaline and nonparietal fluid secretion in humans. Gerontology. 1998;44:222–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee M, Feldman M. Age-related reductions in gastric mucosal prostaglandin levels increase susceptibility to aspirin-induced injury in rats. Gastroenterology. 1994;107:1746–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Lee M. Age-related changes in gastric blood flow in rats. Gerontology. 1996;42:289–93.CrossRefPubMedGoogle Scholar
  33. 33.
    Gronbech JE, Lacy ER. Role of gastric blood flow in impaired defense and repair of aged rat stomachs. Am J Phys. 1995;269:G737–44.Google Scholar
  34. 34.
    Lee M, Feldman M. The aging stomach: implications for NSAID gastropathy. Gut. 1997;41:425–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Laine L, Curtis SP, Cryer B, Kaur A, Cannon CP. Risk factors for NSAID-associated upper GI clinical events in a long-term prospective study of 34 701 arthritis patients. Aliment Pharmacol Ther. 2010;32:1240–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Laine L. Review article: gastrointestinal bleeding with low-dose aspirin – what’s the risk? Aliment Pharmacol Ther. 2006;24:897–908.Google Scholar
  37. 37.
    van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.CrossRefPubMedGoogle Scholar
  38. 38.
    Korbling M, Estrov Z, Champlin R. Adult stem cells and tissue repair. Bone Marrow Transplant. 2003;32(Suppl 1):S23–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Chen J, Astle CM, Harrison DE. Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp Hematol. 1999;27:928–35.CrossRefPubMedGoogle Scholar
  40. 40.
    Lee HM, Greeley Jr GH, Englander EW. Effects of aging on expression of genes involved in regulation of proliferation and apoptosis in the colonic epithelium. Mech Ageing Dev. 2000;115:139–55.CrossRefPubMedGoogle Scholar
  41. 41.
    O’Sullivan J, Risques RA, Mandelson MT, Chen L, Brentnall TA, Bronner MP, et al. Telomere length in the colon declines with age: a relation to colorectal cancer? Cancer Epidemiol Biomark Prev. 2006;15:573–7.CrossRefGoogle Scholar
  42. 42.
    Zou Y, Sfeir A, Gryaznov SM, Shay JW, Wright WE. Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell. 2004;15:3709–18.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tierney AJ. Undernutrition and elderly hospital patients: a review. J Adv Nurs. 1996;23:228–36.CrossRefPubMedGoogle Scholar
  44. 44.
    Kerstetter JE, Holthausen BA, Fitz PA. Malnutrition in the institutionalized older adult. J Am Diet Assoc. 1992;92:1109–16.PubMedGoogle Scholar
  45. 45.
    Payette H, Coulombe C, Boutier V, Gray-Donald K. Weight loss and mortality among free-living frail elders: a prospective study. J Gerontol A Biol Sci Med Sci. 1999;54:M440–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Boyce JM, Shone GR. Effects of ageing on smell and taste. Postgrad Med J. 2006;82:239–41.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Morley JE. Decreased food intake with aging. J Gerontol A Biol Sci Med Sci. 2001;56 Spec No 2:81–8.Google Scholar
  48. 48.
    Riepe SP, Goldstein J, Alpers DH. Effect of secreted Bacteroides proteases on human intestinal brush border hydrolases. J Clin Invest. 1980;66:314–22.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Drozdowski L, Thomson AB. Aging and the intestine. World J Gastroenterol. 2006;12:7578–84.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Feibusch JM, Holt PR. Impaired absorptive capacity for carbohydrate in the aging human. Dig Dis Sci. 1982;27:1095–100.CrossRefPubMedGoogle Scholar
  51. 51.
    Salemans JM, Nagengast FM, Tangerman A, van Schaik A, Hopman WP, de Haan AF, et al. Effect of ageing on postprandial conjugated and unconjugated serum bile acid levels in healthy subjects. Eur J Clin Investig. 1993;23:192–8.CrossRefGoogle Scholar
  52. 52.
    Becker GH, Meyer J, Necheles H. Fat absorption in young and old age. Gastroenterology. 1950;14:80–92.PubMedGoogle Scholar
  53. 53.
    Pabst R, Russell MW, Brandtzaeg P. Tissue distribution of lymphocytes and plasma cells and the role of the gut. Trends Immunol. 2008;29:206–8; author reply 9–10.Google Scholar
  54. 54.
    Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8:110–20.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shore SA, Cho Y. Obesity and asthma: microbiome-metabolome interactions. Am J Respir Cell Mol Biol. 2016;54(5):609–17.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92(1087):286–300.CrossRefPubMedGoogle Scholar
  57. 57.
    Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Muller G, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128:646–52 e1–5.Google Scholar
  58. 58.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb. 2016;23(8):908–21.CrossRefPubMedGoogle Scholar
  60. 60.
    Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6:306–14.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16:7493–519.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Makivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103:227–34.CrossRefPubMedGoogle Scholar
  63. 63.
    Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev. 2008;7:83–105.CrossRefPubMedGoogle Scholar
  64. 64.
    Desai A, Grolleau-Julius A, Yung R. Leukocyte function in the aging immune system. J Leukoc Biol. 2010;87:1001–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ishimoto Y, Tomiyama-Miyaji C, Watanabe H, Yokoyama H, Ebe K, Tsubata S, et al. Age-dependent variation in the proportion and number of intestinal lymphocyte subsets, especially natural killer T cells, double-positive CD4+ CD8+ cells and B220+ T cells, in mice. Immunology. 2004;113:371–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Biswas A, Wilmanski J, Forsman H, Hrncir T, Hao L, Tlaskalova-Hogenova H, et al. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine. Eur J Immunol. 2011;41:182–94.CrossRefPubMedGoogle Scholar
  67. 67.
    Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR. Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev. 2011;10:346–53.CrossRefPubMedGoogle Scholar
  68. 68.
    van Duin D, Shaw AC. Toll-like receptors in older adults. J Am Geriatr Soc. 2007;55:1438–44.CrossRefPubMedGoogle Scholar
  69. 69.
    van Duin D, Mohanty S, Thomas V, Ginter S, Montgomery RR, Fikrig E, et al. Age-associated defect in human TLR-1/2 function. J Immunol. 2007;178:970–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Holt PR. Gastrointestinal diseases in the elderly. Curr Opin Clin Nutr Metab Care. 2003;6:41–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Thomson AB. Small intestinal disorders in the elderly. Best Pract Res Clin Gastroenterol. 2009;23:861–74.CrossRefPubMedGoogle Scholar
  72. 72.
    Tu C, Tsai C, Tsai C, Huang T, Cheng S, Liu T. Postoperative ileus in the elderly. Int J Gerontol. 2014;8:1–5.CrossRefGoogle Scholar
  73. 73.
    Watts DD, Fakhry SM, Group EM-IHVIR. Incidence of hollow viscus injury in blunt trauma: an analysis from 275,557 trauma admissions from the East multi-institutional trial. J Trauma. 2003;54:289–94.CrossRefPubMedGoogle Scholar
  74. 74.
    Moore EE, Cogbill TH, Malangoni MA, Jurkovich GJ, Champion HR, Gennarelli TA, et al. Organ injury scaling, II: pancreas, duodenum, small bowel, colon, and rectum. J Trauma. 1990;30:1427–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Calland JF, Ingraham AM, Martin N, Marshall GT, Schulman CI, Stapleton T, et al. Evaluation and management of geriatric trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg. 2012;73:S345–50.CrossRefPubMedGoogle Scholar
  76. 76.
    ATLS Student Course Manual. Advanced trauma life support. 9th edn. American College of Surgeons. Chicago, Illinois; 2012.Google Scholar
  77. 77.
    Nishijima DK, Simel DL, Wisner DH, Holmes JF. Does this adult patient have a blunt intra-abdominal injury? JAMA. 2012;307:1517–27.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bhagvan S, Turai M, Holden A, Ng A, Civil I. Predicting hollow viscus injury in blunt abdominal trauma with computed tomography. World J Surg. 2013;37:123–6.CrossRefPubMedGoogle Scholar
  79. 79.
    Ekeh AP, Saxe J, Walusimbi M, Tchorz KM, Woods RJ, Anderson 3rd HL, et al. Diagnosis of blunt intestinal and mesenteric injury in the era of multidetector CT technology – are results better? J Trauma. 2008;65:354–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Williams MD, Watts D, Fakhry S. Colon injury after blunt abdominal trauma: results of the EAST Multi-Institutional Hollow Viscus Injury Study. J Trauma. 2003;55:906–12.CrossRefPubMedGoogle Scholar
  81. 81.
    Lawrence DM. Gastrointestinal trauma. Crit Care Nurs Clin North Am. 1993;5:127–40.PubMedGoogle Scholar
  82. 82.
    Goldberg SR, Anand RJ, Como JJ, Dechert T, Dente C, Luchette FA, et al. Prophylactic antibiotic use in penetrating abdominal trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg. 2012;73:S321–5.CrossRefPubMedGoogle Scholar
  83. 83.
    Kirton OC, O’Neill PA, Kestner M, Tortella BJ. Perioperative antibiotic use in high-risk penetrating hollow viscus injury: a prospective randomized, double-blind, placebo-control trial of 24 hours versus 5 days. J Trauma. 2000;49:822–32.CrossRefPubMedGoogle Scholar
  84. 84.
    Barbar S, Noventa F, Rossetto V, Ferrari A, Brandolin B, Perlati M, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010;8:2450–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Zafar SZ, Cornwell EC. Injuries to the small and large bowel. In: Cameron JL, Cameron AM, editors. Current surgical therapy. Philadephia: Elsevier; 2014. p. 1041–5.Google Scholar
  86. 86.
    Kozar RA, Arbabi S, Stein DM, Shackford SR, Barraco RD, Biffl WL, et al. Injury in the aged: geriatric trauma care at the crossroads. J Trauma Acute Care Surg. 2015;78:1197–209.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Luchette FA. Caring for the geriatric surgical patient. Surg Clin North Am. 2015;95:xvii–xviii.Google Scholar
  88. 88.
    Livingston EH, Passaro Jr EP. Postoperative ileus. Dig Dis Sci. 1990;35:121–32.CrossRefPubMedGoogle Scholar
  89. 89.
    Boeckxstaens GE, de Jonge WJ. Neuroimmune mechanisms in postoperative ileus. Gut. 2009;58:1300–11.CrossRefPubMedGoogle Scholar
  90. 90.
    Story SK, Chamberlain RS. A comprehensive review of evidence-based strategies to prevent and treat postoperative ileus. Dig Surg. 2009;26:265–75.CrossRefPubMedGoogle Scholar
  91. 91.
    Thompson M, Magnuson B. Management of postoperative ileus. Orthopedics. 2012;35:213–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Brady JT, Dosokey EM, Crawshaw BP, Steele SR, Delaney CP. The use of alvimopan for postoperative ileus in small and large bowel resections. Expert Rev Gastroenterol Hepatol. 2015;9:1351–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Wolff BG, Michelassi F, Gerkin TM, Techner L, Gabriel K, Du W, et al. Alvimopan, a novel, peripherally acting mu opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus. Ann Surg. 2004;240:728–34; discussion 34–5.Google Scholar
  94. 94.
    Manger JP, Nelson M, Blanchard S, Helo S, Conaway M, Krupski TL. Alvimopan: a cost-effective tool to decrease cystectomy length of stay. Cent European J Urol. 2014;67:335–41.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Nguyen DL, Maithel S, Nguyen ET, Bechtold ML. Does alvimopan enhance return of bowel function in laparoscopic gastrointestinal surgery? A meta-analysis. Ann Gastroenterol. 2015;28:475–80.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Adam MA, Lee LM, Kim J, Shenoi M, Mallipeddi M, Aziz H, et al. Alvimopan provides additional improvement in outcomes and cost savings in enhanced recovery colorectal surgery. Ann Surg. 2016;264(1):141–6.CrossRefPubMedGoogle Scholar
  97. 97.
    Nanni G, Garbini A, Luchetti P, Nanni G, Ronconi P, Castagneto M. Ogilvie’s syndrome (acute colonic pseudo-obstruction): review of the literature (October 1948 to March 1980) and report of four additional cases. Dis Colon Rectum. 1982;25:157–66.CrossRefPubMedGoogle Scholar
  98. 98.
    Vanek VW, Al-Salti M. Acute pseudo-obstruction of the colon (Ogilvie’s syndrome). An analysis of 400 cases. Dis Colon Rectum. 1986;29:203–10.CrossRefPubMedGoogle Scholar
  99. 99.
    Saunders MD. Acute colonic pseudo-obstruction. Gastrointest Endosc Clin N Am. 2007;17:341–60, vi–vii.Google Scholar
  100. 100.
    Ponec RJ, Saunders MD, Kimmey MB. Neostigmine for the treatment of acute colonic pseudo-obstruction. N Engl J Med. 1999;341:137–41.CrossRefPubMedGoogle Scholar
  101. 101.
    Elsner JL, Smith JM, Ensor CR. Intravenous neostigmine for postoperative acute colonic pseudo-obstruction. Ann Pharmacother. 2012;46:430–5.CrossRefPubMedGoogle Scholar
  102. 102.
    American Heart Association. Advanced cardiovascular life support: provider manual. 2011.Google Scholar
  103. 103.
    Pereira P, Djeudji F, Leduc P, Fanget F, Barth X. Ogilvie’s syndrome-acute colonic pseudo-obstruction. J Visc Surg. 2015;152:99–105.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Clinical Instructor in SurgeryUniversity of Cincinnati, Department of SurgeryCincinnatiUSA
  2. 2.Divisions of General Surgery and Trauma, Critical Care, and Acute Care SurgeryUniversity of Cincinnati, Department of SurgeryCincinnatiUSA

Personalised recommendations