Skip to main content

Glycogen as Key Energy Storehouse and Possibly Responsible for Multidrug Resistance in Mycobacterium tuberculosis

  • Chapter
  • First Online:
Drug Resistance in Bacteria, Fungi, Malaria, and Cancer

Abstract

Tuberculosis (TB) is a major public health problem with a high mortality rate worldwide due to Mycobacterium tuberculosis (M. tuberculosis) pathogen, claiming 9.6 million total cases were estimated in 2014 and more than 1.5 million people dead. M. tuberculosis and other pathogenic mycobacterial species produce a variety of glycogen or glycogen-associated molecules like lipoarabinomannan (LAM), trehalose monomycolate (TMM), phenolic glycolipids (PGLs), trehalose dimycolate (TDM), phosphatidylinositol-containing mannosides (PIMs), etc., that represent as major glycans present in the outermost layer of M. tuberculosis. The M. tuberculosis accumulate glycogen during harsh environmental condition, i.e. presence of reactive oxygen and nitrogen intermediates, limited nutrients availability and depletion of other essential elements required for their survival within the host. The glycosyltransferases (GTs) enzyme involves two families, glycogen transferase-3 (eukaryotes) and GTs-5 (eubacterial and archaeal), that play a major role in the regulation of glycogen metabolism. In bacteria, regulation of glycogen anabolism involves several glycogen synthase enzymes, i.e. α- d-glycogen synthase A (glgA), 1,4-α-d-glucan 6-glucosyltransferase (glgB) and glucose-1-phosphate adenylyltransferase (glgC), while catabolism involves glycogen phosphorylase (glgP) enzyme. In recent years, role of glycogen was investigated enormously in the pathogenesis of M. tuberculosis. Two major glycogen conjugates present in the cell wall of M. tuberculosis are TDM and TMM. These conjugates serve as precursors for the synthesis of mycolic acid that plays a key role in the invasion and pathogenesis of M. tuberculosis. This chapter summarizes the current updates of the presence of glycogen/glycoconjugates and their physiological role in the survival and pathogenesis mechanisms of M. tuberculosis during antagonistic conditions. Also, the chapter summarizes evidence of the putative GTs in the Mycobacterium spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP reductase:

Enoyl-acyl carrier protein reductase

ADP:

Adenosine diphosphate

AM:

Arabinomannan

CR-3:

Complement receptor 3

G1P:

Glucose-1-phosphate

G6P:

Glucose-6-phosphate

glgA:

α- d -Glycogen synthase A

glgB:

1,4-α-d-Glucan 6-glucosyltransferase

glgC :

Glucose-1-phosphate adenylyltransferase

glgP:

Glycogen phosphorylase

glgX :

Glucan hydrolase

GS:

Glycogen synthase

GTB:

Glycosyltransferase B

GTs:

Glycosyltransferases

KGD:

α-Ketoglutarate decarboxylase

LAM:

Lipoarabinomannan

LPS:

Lipopolysaccharide

M. tuberculosis :

Mycobacterium tuberculosis

MGLP:

6-O-Methylglucosyl-containing lipopolysaccharides

NPP:

Nucleotide pyrophosphate

ODHc:

2-Oxoglutarate dehydrogenase complex

PAMP:

Pathogen-associated molecular patterns

PGLs:

Phenolic glycolipids

PGM:

Phosphoglucomutase

PI:

Phosphatidyl-myo-inositol

PIMs:

Phosphatidylinositol-containing mannosides

STRE:

Cis-element stress response element

TB:

Tuberculosis

TLR2:

Toll-like receptor

TMM:

Trehalose monomycolate

UDP:

Uridine diphosphate

References

  • Alonso-Casajús N, Dauvillée D, Viale AM, Muñoz FJ, Baroja-Fernández E, Morán-Zorzano MT, Eydallin G, Ball S, Pozueta-Romero J (2006) Glycogen phosphorylase, the product of the glgP Gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol 188:5266–5272. doi:10.1128/JB.01566-05

    PubMed  PubMed Central  CAS  Google Scholar 

  • Antoine AD, Tepper BS (1969) Environmental control of glycogen and lipid content of Mycobacterium phlei. J Gen Microbiol 55:217–226. doi:10.1099/00221287-55-2-217

    CAS  PubMed  Google Scholar 

  • Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    PubMed  Google Scholar 

  • Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA (2015) Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta 1850:13–21. doi:10.1016/j.bbagen.2014.09.023

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233. doi:10.1146/annurev.arplant.54.031902.134927

    CAS  PubMed  Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213–225. doi:10.1128/MMBR.67.2.213-225.2003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baskaran S, Roach PJ, DePaoli-Roach AA, Hurley TD (2010) Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci U S A 107:17563–17568. doi:10.1073/pnas.1006340107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belanger AE, Hatfull GF (1999) Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J Bacteriol 181:6670–6678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422

    CAS  PubMed  Google Scholar 

  • Berg S, Kaur D, Jackson M, Brennan PJ (2007) The glycosyltransferases of Mycobacterium tuberculosis – roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17:35R–56R. doi:10.1093/glycob/cwm010

    CAS  Google Scholar 

  • Besra GS, Khoo KH, McNeil MR, Dell A, Morris HR, Brennan PJ (1995) A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry (Mosc) 34:4257–4266

    CAS  Google Scholar 

  • Bittencourt VCB, Figueiredo RT, da Silva RB, Mourão-Sá DS, Fernandez PL, Sassaki GL, Mulloy B, Bozza MT, Barreto-Bergter E (2006) An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J Biol Chem 281:22614–22623. doi:10.1074/jbc.M511417200

    CAS  PubMed  Google Scholar 

  • Bolat I (2008) The importance of trehalose in brewing yeast survival. Innov Romanian Food Biotechnol 2:1–10

    CAS  Google Scholar 

  • Bourassa L, Camilli A (2009) Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol 72:124–138. doi:10.1111/j.1365-2958.2009.06629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R–37R. doi:10.1093/glycob/cwj016

    CAS  PubMed  Google Scholar 

  • Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM (2004) Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J 23:3196–3205. doi:10.1038/sj.emboj.7600324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calder PC (1991) Glycogen structure and biogenesis. Int J Biochem 23:1335–1352. doi:10.1016/0020-711X(91)90274-Q

    CAS  PubMed  Google Scholar 

  • Campbell NA, Williamson B, Heyden RJ (2006) Biology: Exploring Life. Pearson Prentice Hall, Upper Saddle River, NJ, 492 p. ISBN 0-13-250882-6

    Google Scholar 

  • Carroll JD, Pastuszak I, Edavana VK, Pan YT, Elbein AD (2007) A novel trehalase from Mycobacterium smegmatis – purification, properties, requirements. FEBS J 274:1701–1714. doi:10.1111/j.1742-4658.2007.05715

    CAS  PubMed  Google Scholar 

  • Chandra G, Chater KF, Bornemann S (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157:1565–1572. doi:10.1099/mic.0.044263-0

    CAS  PubMed  Google Scholar 

  • Chauhan DS, Chandra S, Gupta A, Singh TR (2012) Molecular modelling, docking and interaction studies of human-plasmogen and salmonella enolase with enolase inhibitors. Bioinformation 8:185–188. doi:10.6026/97320630008185

    PubMed  PubMed Central  Google Scholar 

  • Chen Q, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol 207:3125–3129. doi:10.1242/jeb.01133

    CAS  PubMed  Google Scholar 

  • Cheng C, Mu J, Farkas I, Huang D, Goebl MG, Roach PJ (1995) Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 15:6632–6640. doi:10.1128/MCB.15.12.6632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cid E, Geremia RA, Guinovart JJ, Ferrer JC (2002) Glycogen synthase: towards a minimum catalytic unit? FEBS Lett 528:5–11. doi:10.1016/S0014-5793(02)03313-6

    CAS  PubMed  Google Scholar 

  • Crick DC, Mahapatra S, Brennan PJ (2001) Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11:107R–118R. doi:10.1093/glycob/11.9.107R

    CAS  PubMed  Google Scholar 

  • Cywes C, Hoppe HC, Daffé M, Ehlers MR (1997) Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect Immun 65:4258–4266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daffé M, Etienne G (1999) The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuberc Lung Dis 79:153–169

    Google Scholar 

  • Dauvillée D, Kinderf IS, Li Z, Kosar-Hashemi B, Samuel MS, Rampling L, Ball S, Morell MK (2005) Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187:1465–1473. doi:10.1128/JB.187.4.1465-1473.2005

    PubMed  PubMed Central  CAS  Google Scholar 

  • De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146(Pt 1):199–208. doi:10.1099/00221287-146-1-199

    PubMed  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031. doi:10.1128/MMBR.00024-06

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinadayala P, Sambou T, Daffé M, Lemassu A (2008) Comparative structural analyses of the alpha-glucan and glycogen from Mycobacterium bovis. Glycobiology 18:502–508. doi:10.1093/glycob/cwn031

    CAS  PubMed  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R. doi:10.1093/glycob/cwg047

    CAS  PubMed  Google Scholar 

  • Farkas I, Hardy TA, Goebl MG, Roach PJ (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem 266:15602–15607

    CAS  PubMed  Google Scholar 

  • François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145. doi:10.1111/j.1574-6976.2001.tb00574.x

    PubMed  Google Scholar 

  • Gagliardi MC, Lemassu A, Teloni R, Mariotti S, Sargentini V, Pardini M, Daffé M, Nisini R (2007) Cell wall-associated alpha-glucan is instrumental for Mycobacterium tuberculosis to block CD1 molecule expression and disable the function of dendritic cell derived from infected monocyte. Cell Microbiol 9:2081–2092. doi:10.1111/j.1462-5822.2007.00940.x

    CAS  PubMed  Google Scholar 

  • Geurtsen J, Chedammi S, Mesters J, Cot M, Driessen NN, Sambou T, Kakutani R, Ummels R, Maaskant J, Takata H, Baba O, Terashima T, Bovin N, Vandenbroucke-Grauls CMJE, Nigou J, Puzo G, Lemassu A, Daffé M, Appelmelk BJ (2009) Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol 183:5221–5231. doi:10.4049/jimmunol.0900768

    CAS  PubMed  Google Scholar 

  • Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ (2002) Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol 9:1337–1346. doi:10.1016/S1074-5521(02)00292-2

    CAS  PubMed  Google Scholar 

  • Gupta AK, Singh A, Singh S (2014) Glycogenomics of Mycobacterium tuberculosis. Mycobact Dis 4:175. doi:10.4172/2161-1068.1000175

    Google Scholar 

  • Hengge-Aronis R, Fischer D (1992) Identification and molecular analysis of glgS, a novel growth-phase-regulated and rpoS-dependent gene involved in glycogen synthesis in Escherichia coli. Mol Microbiol 6:1877–1886. doi:10.1111/j.1365-2958.1992.tb01360.x

    CAS  PubMed  Google Scholar 

  • Henrissat B, Deleury E, Coutinho PM (2002) Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria? Trends Genet TIG 18:437–440. doi:10.1016/S0168-9525(02)02734-8

    CAS  PubMed  Google Scholar 

  • Ingermann RL, Virgin GL (1987) Glycogen content and release of glucose from red blood cells of the sipunculan worm themiste dyscrita. J Exp Biol 129:141–149

    CAS  Google Scholar 

  • Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z, Sacchettini JC, Besra G, Bornemann S, Jacobs WR (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol 6:376–384. doi:10.1038/nchembio.340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Mizrahi V, Warner DF (2014) The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect 3, e17. doi:10.1038/emi.2014.17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korf J, Stoltz A, Verschoor J, De Baetselier P, Grooten J (2005) The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol 35:890–900. doi:10.1002/eji.200425332

    CAS  PubMed  Google Scholar 

  • Kumar S, Jena L (2014) Understanding rifampicin resistance in tuberculosis through a computational approach. Genom Inform 12:276–282. doi:10.5808/GI.2014.12.4.276

    Google Scholar 

  • Leiba J, Syson K, Baronian G, Zanella-Cléon I, Kalscheuer R, Kremer L, Bornemann S, Molle V (2013) Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation. J Biol Chem 288:16546–16556. doi:10.1074/jbc.M112.398503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemassu A, Daffé M (1994) Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J 297(Pt 2):351–357. doi:10.1042/bj2970351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung P, Lee YM, Greenberg E, Esch K, Boylan S, Preiss J (1986) Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol 167:82–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K, Hwang PK, Fletterick RJ (1995) Mechanism of regulation in yeast glycogen phosphorylase. J Biol Chem 270:26833–26839. doi:10.1074/jbc.270.45.26833

    CAS  PubMed  Google Scholar 

  • McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA (2005) Glycogen production by different Salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology 151:3969–3977. doi:10.1099/mic.0.28292-0

    CAS  PubMed  Google Scholar 

  • Mendes V, Maranha A, Alarico S, da Costa MS, Empadinhas N (2011) Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis. Sci Rep 1:177. doi:10.1038/srep00177

    PubMed  PubMed Central  CAS  Google Scholar 

  • Montero M, Eydallin G, Viale AM, Almagro G, Muñoz FJ, Rahimpour M, Sesma MT, Baroja-Fernández E, Pozueta-Romero J (2009) Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem J 424:129–141. doi:10.1042/BJ20090980

    CAS  PubMed  Google Scholar 

  • Morán-Zorzano MT, Alonso-Casajús N, Muñoz FJ, Viale AM, Baroja-Fernández E, Eydallin G, Pozueta-Romero J (2007) Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella. FEBS Lett 581:4423–4429. doi:10.1016/j.febslet.2007.08.017

    PubMed  CAS  Google Scholar 

  • Morán-Zorzano MT, Montero M, Muñoz FJ, Alonso-Casajús N, Viale AM, Eydallin G, Sesma MT, Baroja-Fernández E, Pozueta-Romero J (2008) Cytoplasmic Escherichia coli ADP sugar pyrophosphatase binds to cell membranes in response to extracellular signals as the cell population density increases. FEMS Microbiol Lett 288:25–32. doi:10.1016/j.febslet.2007.08.017

    PubMed  CAS  Google Scholar 

  • Moses SW, Bashan N, Gutman A (1972) Glycogen metabolism in the normal red blood cell. Blood 40:836–843

    CAS  PubMed  Google Scholar 

  • Ortalo-Magné A, Dupont MA, Lemassu A, Andersen AB, Gounon P, Daffé M (1995) Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141(Pt 7):1609–1620. doi:10.1099/13500872-141-7-1609

    PubMed  Google Scholar 

  • Pal K, Kumar S, Sharma S, Garg SK, Alam MS, Xu HE, Agrawal P, Swaminathan K (2010) Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal beta-sandwich in substrate specificity and enzymatic activity. J Biol Chem 285:20897–20903. doi:10.1074/jbc.M110.121707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palomino JC, Martin A (2014) Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiot Basel Switz 3:317–340. doi:10.3390/antibiotics3030317

    CAS  Google Scholar 

  • Palomo M, Kralj S, van der Maarel MJEC, Dijkhuizen L (2009) The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl Environ Microbiol 75:1355–1362. doi:10.1128/AEM.02141-08

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan YT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD (2004) Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem FEBS 271:4259–4269. doi:10.1111/j.1432-1033.2004.04365.x

    CAS  Google Scholar 

  • Pedersen LC, Dong J, Taniguchi F, Kitagawa H, Krahn JM, Pedersen LG, Sugahara K, Negishi M (2003) Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J Biol Chem 278:14420–14428. doi:10.1074/jbc.M210532200

    CAS  PubMed  Google Scholar 

  • Pederson BA, Cheng C, Wilson WA, Roach PJ (2000) Regulation of glycogen synthase. Identification of residues involved in regulation by the allosteric ligand glucose-6-P and by phosphorylation. J Biol Chem 275:27753–27761. doi:10.1074/jbc.M003342200

    CAS  PubMed  Google Scholar 

  • Possner DDD, Claesson M, Guy JE (2015) Structure of the glycosyl transferase Ktr4p from Saccharomyces cerevisiae. PLoS One 10, e0136239. doi:10.1371/journal.pone.0136239

    PubMed  PubMed Central  CAS  Google Scholar 

  • Preiss J (2006) Bacterial glycogen inclusions: enzymology and regulation of synthesis. In: Shively DJM (ed) Inclusions in prokaryotes. Springer, Berlin, pp 71–108. doi:10.1007/7171_004

    Google Scholar 

  • Preiss J, Romeo T (1994) Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol 47:299–329. doi:10.1016/S0079-6603(08)60255-X

    CAS  PubMed  Google Scholar 

  • Ramaswamy NT, Li L, Khalil M, Cannon JF (1998) Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics 149:57–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rini J, Esko J, Varki A (2009) Glycosyltransferases and glycan-processing enzymes. In: Varki A (ed) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. ISBN 978-1-621821-32-8

    Google Scholar 

  • Roach PJ, Cheng C, Huang D, Lin A, Mu J, Skurat AV, Wilson W, Zhai L (1998) Novel aspects of the regulation of glycogen storage. J Basic Clin Physiol Pharmacol 9:139–151. doi:10.1515/JBCPP.1998.9.2-4.139

    CAS  PubMed  Google Scholar 

  • Rose AH, Tempest DW (1989) Advances in microbial physiology. Academic Press, London. ISBN 0-12-0277730-1

    Google Scholar 

  • Schwebach JR, Glatman-Freedman A, Gunther-Cummins L, Dai Z, Robbins JB, Schneerson R, Casadevall A (2002) Glucan is a component of the Mycobacterium tuberculosis surface that is expressed in-vitro and in-vivo. Infect Immun 70:2566–2575. doi:10.1128/IAI.70.5.2566-2575.2002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seibold GM, Breitinger KJ, Kempkes R, Both L, Krämer M, Dempf S, Eikmanns BJ (2011) The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum. Microbiology 157:3243–3251. doi:10.1099/mic.0.051565-0

    CAS  PubMed  Google Scholar 

  • Seok YJ, Koo BM, Sondej M, Peterkofsky A (2001) Regulation of E. coli glycogen phosphorylase activity by HPr. J Mol Microbiol Biotechnol 3:385–393

    CAS  PubMed  Google Scholar 

  • Shively JM (1974) Inclusion bodies of prokaryotes. Annu Rev Microbiol 28:167–187. doi:10.1146/annurev.mi.28.100174.001123

    CAS  PubMed  Google Scholar 

  • Shriver Z, Raguram S, Sasisekharan R (2004) Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 3:863–873. doi:10.1038/nrd1521

    CAS  PubMed  Google Scholar 

  • Silljé HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, Verrips CT (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol 181:396–400

    PubMed  PubMed Central  Google Scholar 

  • Singh A, Gopinath K, Singh N, Singh S (2014) Deciphering the sequential events during in-vivo acquisition of drug resistance in Mycobacterium tuberculosis. Int J Mycobacteriol 3:36–40. doi:10.1016/j.ijmyco.2013.10.006

    PubMed  Google Scholar 

  • Singh A, Gopinath K, Sharma P, Bisht D, Sharma P, Singh N, Singh S (2015) Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient pulmonary tuberculosis turning from drug sensitive to multidrug resistant. Indian J Med Res 141:27–45. doi:10.4103/0971-5916.154492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slock JA, Stahly DP (1974) Polysaccharide that may serve as a carbon and energy storage compound for sporulation in Bacillus cereus. J Bacteriol 120:399–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stadthagen G, Sambou T, Guerin M et al (2007) Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 282:27270–27276. doi:10.1074/jbc.M702676200

    CAS  PubMed  Google Scholar 

  • Stokes RW, Norris-Jones R, Brooks DE, Beveridge TJ, Doxsee D, Thorson LM (2004) The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infect Immun 72:5676–5686. doi:10.1128/IAI.72.10.5676-5686.2004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101. doi:10.1128/CMR.18.1.81-101.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unligil UM, Rini JM (2000) Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10:510–517. doi:10.1016/S0959-440X(00)00124-X

    CAS  PubMed  Google Scholar 

  • Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985. doi:10.1111/j.1574-6976.2010.00220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zmasek CM, Godzik A (2014) Phylogenomic analysis of glycogen branching and debranching enzymatic duo. BMC Evol Biol 14:183. doi:10.1186/s12862-014-0183-2

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarman Singh MD, FRSC, FRSTMH, FAMS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, A.K., Singh, A., Singh, S. (2017). Glycogen as Key Energy Storehouse and Possibly Responsible for Multidrug Resistance in Mycobacterium tuberculosis . In: Arora, G., Sajid, A., Kalia, V. (eds) Drug Resistance in Bacteria, Fungi, Malaria, and Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48683-3_11

Download citation

Publish with us

Policies and ethics