Advertisement

Joint Segmentation of Myocardium on Rest and Stress Spect Images

  • Marc Filippi
  • Michel DesvignesEmail author
  • Anastasia Bozok
  • Gilles Barone-Rochette
  • Daniel Fagret
  • Laurent Riou
  • Catherine Ghezzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10016)

Abstract

This paper presents a level set segmentation of the myocardium, endocardium and epicardium surfaces of the heart from 2D SPECT rest and stress perfusion images of the same patient to compute a heterogeneity index. Cardiac SPECT images have low resolution, low signal to noise ratio and lack of anatomical information. So accurate segmentation is difficult. The proposed method adds joint constraints of shape, parallelism and intensity in a level-set framework to simultaneously extract myocardium from rest and stress images. Results are compared to classical level-set segmentation.

Keywords

Segmentation SPECT Left Ventricle Myocardium Levet Set Constraints Spatial relations 

References

  1. 1.
    Becker, M., Magnenat-Thalmann, N.: Deformable models in medical image segmentation. In: Magnenat-Thalmann, N., Ratib, O., Choi, H.F. (eds.) 3D Multiscale Physiological Human, pp. 81–106. Springer, London (2014)CrossRefGoogle Scholar
  2. 2.
    Camici, P.G., d’Amati, G., Rimoldi, O.: Coronary microvascular dysfunction: mechanisms and functional assessment. Nat. Rev. Cardiol. 12(1), 48–62 (2015). http://dx.doi.org/10.1038/nrcardio.2014.160 CrossRefGoogle Scholar
  3. 3.
    Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69(3), 335–351 (2006)CrossRefGoogle Scholar
  4. 4.
    Grosgeorge, D., Petitjean, C., Dacher, J.N., Ruan, S.: Graph cut segmentation with a statistical shape model in cardiac MRI. Comput. Vis. Image Underst. 117(9), 1027–1035 (2013)CrossRefGoogle Scholar
  5. 5.
    Kang, D., Woo, J., Slomka, P.J., Dey, D., Germano, G., Jay Kuo, C.C.: Heart chambers and whole heart segmentation techniques: review. J. Electron. Imaging 21(1), 010901-1–010901-16 (2012)CrossRefGoogle Scholar
  6. 6.
    Khan, M.W.: A survey: image segmentation techniques. Int. J. Future Comput. Commun. 3(2), 89 (2014)CrossRefGoogle Scholar
  7. 7.
    Kohlberger, T., Funka-Lea, G., Desh, V.: Soft level set coupling for LV segmentation in gated perfusion SPECT. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 327–334. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75757-3_40 CrossRefGoogle Scholar
  8. 8.
    Li, C., Kao, C.Y., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–7, June 2007Google Scholar
  9. 9.
    Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003)CrossRefGoogle Scholar
  10. 10.
    Paragios, N.: Curve propagation, level set methods and grouping. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 145–159. Springer, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation 1. Ann. Rev. Biomed. Eng. 2(1), 315–337 (2000)CrossRefGoogle Scholar
  12. 12.
    Poujol, J., Desvignes, M., Broisat, A., Barone-Rochette, G., Vanzetto, G., Fagret, D., Riou, L., Ghezzi, C.: Myocardium segmentation on 3d spect images. In: 2015 IEEE International Conference on Image Processing, ICIP 2015, pp. 4788–4792 (2015)Google Scholar
  13. 13.
    Riklin-Raviv, T., Sochen, N., Kiryati, N.: Shape-based mutual segmentation. Int. J. Comput. Vis. 79(3), 231–245 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002). doi: 10.1007/3-540-47967-8_6 CrossRefGoogle Scholar
  15. 15.
    Soneson, H., Ubachs, J.F., Ugander, M., Arheden, H., Heiberg, E.: An improved method for automatic segmentation of the left ventricle in myocardial perfusion spect. J. Nucl. Med. 50(2), 205–213 (2009)CrossRefGoogle Scholar
  16. 16.
    Woo, J., Slomka, P.J., Kuo, C.C.J., Hong, B.W.: Multiphase segmentation using an implicit dual shape prior: application to detection of left ventricle in cardiac mri. Comput. Vis. Image Underst. 117(9), 1084–1094 (2013)CrossRefGoogle Scholar
  17. 17.
    Yang, R., Mirmehdi, M., Xie, X., Hall, D.J.: Shape and appearance based spatiotemporal constraint for LV segmentation in 4D cardiac SPECT. In: CI2BM09 - MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling, London, United Kingdom, p. 10, September 2009Google Scholar
  18. 18.
    Yu, Z.Q., Zhu, Y., Yang, J., Zhu, Y.M.: A hybrid region-boundary model for cerebral cortical segmentation in mri. Comput. Med. Imaging Graph. 30(3), 197–208 (2006). http://dx.doi.org/10.1016/j.compmedimag.2006.03.006 CrossRefGoogle Scholar
  19. 19.
    Zhao, Y.Q., Wang, X.F., Shih, F.Y., Yu, G.: A level-set method based on global and local regions for image segmentation. Int. J. Pattern Recogn. Artif. Intell. 26(01), 1255004 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Marc Filippi
    • 1
  • Michel Desvignes
    • 1
    Email author
  • Anastasia Bozok
    • 1
  • Gilles Barone-Rochette
    • 2
  • Daniel Fagret
    • 2
  • Laurent Riou
    • 2
  • Catherine Ghezzi
    • 2
  1. 1.GIPSA-LAB, University Grenoble-Alpes, G INPGrenobleFrance
  2. 2.University Grenoble-Alpes, INSERM1039GrenobleFrance

Personalised recommendations