Person Re-identification in Frontal Gait Sequences via Histogram of Optic Flow Energy Image

  • Athira NambiarEmail author
  • Jacinto C. Nascimento
  • Alexandre Bernardino
  • José Santos-Victor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10016)


In this work, we propose a novel methodology of re-identifying people in frontal video sequences, based on a spatio-temporal representation of the gait based on optic flow features, which we call Histogram Of Flow Energy Image (HOFEI). Optic Flow based methods do not require the silhouette computation thus avoiding image segmentation issues and enabling online re-identification (Re-ID) tasks. Not many works addressed Re-ID with optic flow features in frontal gait. Here, we conduct an extensive study on CASIA dataset, as well as its application in a realistic surveillance scenario- HDA Person dataset. Results show, for the first time, the feasibility of gait re-identification in frontal sequences, without the need for image segmentation.


Gait analysis Optic flow Histogram of Flow Gait Energy Image 



This work was supported by the FCT projects [UID/EEA/ 50009/2013], AHA CMUP-ERI/HCI/0046/2013 and FCT doctoral grant [SFRH/ BD/97258/2013].


  1. 1.
    Stevenage, S.V., Nixon, M.S., Vince, K.: Visual analysis of gait as a cue to identity. Appl. Cogn. Psychol. 13, 513–526 (1999)CrossRefGoogle Scholar
  2. 2.
    Lee, L., Grimson, W.: Gait Analysis for Recognition and Classification. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition (2002)Google Scholar
  3. 3.
    Cunado, D., Nixon, M., Carter, J.: Automatic extraction and description of human gait models for recognition purposes. Comput. Vis. Image Underst. 90, 1–41 (2003)CrossRefGoogle Scholar
  4. 4.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. Pattern Anal. Mach. Intell. 28, 316–322 (2006)CrossRefGoogle Scholar
  5. 5.
    Chen, S., Gao, Y.: An invariant appearance model for gait recognition. In: Proceedings of IEEE Conference on Multimedia and Expo, pp. 1375–1378 (2007)Google Scholar
  6. 6.
    Goffredo, M., Carter, J., Nixon, M.: Front-view gait recognition. In: International Conference on Biometrics: Theory, Applications and Systems, pp. 1–6 (2008)Google Scholar
  7. 7.
    Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006). doi: 10.1007/11744047_33 CrossRefGoogle Scholar
  8. 8.
    Lam, T.H.W., Cheung, K.H., Liu, J.N.K.: Gait flow image: a silhouette-based gait representation for human identification. Pattern Recognit. 44, 973–987 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Yang, Y., Tu, D., Li, G.: Gait recognition using flow histogram energy image. In: International Conference on Pattern Recognition, pp. 444–449 (2014)Google Scholar
  10. 10.
    Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2DLPP for gait recognition. Signal Process. 90, 2295–2302 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hofmann, M., Rigoll, G.: Improved gait recognition using gradient histogram energy image. In: ICIP, pp. 1389–1392 (2012)Google Scholar
  12. 12.
    Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognit. Lett. 31, 2052–2060 (2010)CrossRefGoogle Scholar
  13. 13.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Comput. Vis. Pattern Recognit. 1, 886–893 (2005)Google Scholar
  14. 14.
    Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: International Conference on Pattern Recognition, pp. 441–444 (2006)Google Scholar
  15. 15.
    Moreno, P., Figueira, D., Bernardino, A., Victor, J.S.: People and mobile robot classification through spatio-temporal analysis of optical flow. Int. J. Pattern Recognit. Artif. Intell. 29 (2015)Google Scholar
  16. 16.
    Bashir, K., Xiang, T., Gong, S.: Gait representation using flow fields. In: British Machine Vision Conference (BMVC) (2009)Google Scholar
  17. 17.
    Nambiar, A., Taiana, M., Figueira, D., Nascimento, J.C., Bernardino, A.: A multi-camera video dataset for research on high-definition surveillance. Int. J. Mach. Intell. Sens. Signal Process. 1, 267–286 (2014)Google Scholar
  18. 18.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp. 674–679 (1981)Google Scholar
  19. 19.
    Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognit. Lett. 30, 977–984 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Athira Nambiar
    • 1
    Email author
  • Jacinto C. Nascimento
    • 1
  • Alexandre Bernardino
    • 1
  • José Santos-Victor
    • 1
  1. 1.Institute for Systems and Robotics, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations