Fast Traffic Sign Recognition Using Color Segmentation and Deep Convolutional Networks

  • Ali Youssef
  • Dario Albani
  • Daniele Nardi
  • Domenico Daniele Bloisi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10016)

Abstract

The use of Computer Vision techniques for the automatic recognition of road signs is fundamental for the development of intelligent vehicles and advanced driver assistance systems. In this paper, we describe a procedure based on color segmentation, Histogram of Oriented Gradients (HOG), and Convolutional Neural Networks (CNN) for detecting and classifying road signs. Detection is speeded up by a preprocessing step to reduce the search space, while classification is carried out by using a Deep Learning technique. A quantitative evaluation of the proposed approach has been conducted on the well-known German Traffic Sign data set and on the novel Data set of Italian Traffic Signs (DITS), which is publicly available and contains challenging sequences captured in adverse weather conditions and in an urban scenario at night-time. Experimental results demonstrate the effectiveness of the proposed approach in terms of both classification accuracy and computational speed.

References

  1. 1.
    Barnes, N., Zelinsky, A.: Real-time radial symmetry for speed sign detection. In: Intelligent Vehicles Symposium, pp. 566–571 (2004)Google Scholar
  2. 2.
    Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: CVPR, pp. 2903–2910 (2012)Google Scholar
  3. 3.
    Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: Multi-column deep neural network for traffic sign classification. Neural Netw. 32, 333–338 (2012)CrossRefGoogle Scholar
  4. 4.
    Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: BMVC (2009)Google Scholar
  5. 5.
    Dollr, P., Appel, R., Kienzle, W.: Crosstalk cascades for frame-rate pedestrian detection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. Lecture Notes in Computer Science, vol. 7573, pp. 645–659. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33709-3_46 CrossRefGoogle Scholar
  6. 6.
    Doman, K., Deguchi, D., Takahashi, T., Mekada, Y., Ide, I., Murase, H., Sakai, U.: Estimation of traffic sign visibility considering local and global features in a driving environment. In: Intelligent Vehicles Symposium, pp. 202–207 (2014)Google Scholar
  7. 7.
    Fleyeh, H.: Color detection and segmentation for road and traffic signs. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp. 809–814 (2004)Google Scholar
  8. 8.
    Hanbury, A.: A 3D-polar coordinate colour representation well adapted to image analysis. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 804–811. Springer, Heidelberg (2003). doi:10.1007/3-540-45103-X_107 CrossRefGoogle Scholar
  9. 9.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in neural information processing systems, pp. 1097–1105 (2012)Google Scholar
  10. 10.
    Mathias, M., Timofte, R., Benenson, R., Van-Gool, L.: Traffic sign recognition how far are we from the solution? In: IJCNN, pp. 1–8 (2013)Google Scholar
  11. 11.
    Overett, G., Tychsen-Smith, L., Petersson, L., Pettersson, N., Andersson, L.: Creating robust high-throughput traffic sign detectors using centre-surround hog statistics. Mach. Vis. Appl. 25, 713–726 (2014)CrossRefGoogle Scholar
  12. 12.
    Perona, P.: Visual recognition, Circa 2007. In: Object Categorization Computer and Human Vision Perspectives, pp. 55–68. Cambridge University Press (2009)Google Scholar
  13. 13.
    Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale convolutional networks. In: IJCNN, pp. 2809–2813 (2011)Google Scholar
  14. 14.
    Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012)CrossRefGoogle Scholar
  15. 15.
    Tan, M., Wang, B., Wu, Z., Wang, J., Pan, G.: Weakly supervised metric learning for traffic sign recognition in a LIDAR-equipped vehicle. IEEE Trans. Intell. Transp. Syst. 17(5), 1415–1427 (2016)CrossRefGoogle Scholar
  16. 16.
    Timofte, R., van Gool, L.: Sparse representation based projections. In: BMVC, pp. 61.1–61.12 (2011)Google Scholar
  17. 17.
    Timofte, R., van Gool, L.: Iterative nearest neighbors for classification and dimensionality reduction. In: CVPR, pp. 2456–2463 (2012)Google Scholar
  18. 18.
    Vega, V., Sidibé, D., Fougerolle, Y.: Road signs detection and reconstruction using gielis curves. In: International Conference on Computer Vision Theory and Applications, pp. 393–396 (2012)Google Scholar
  19. 19.
    Wang, D., Yue, S., Xu, J., Hou, X., Liu, C.-L.: A saliency-based cascade method for fast traffic sign detection. In: Intelligent Vehicles Symposium, pp. 180–185 (2015)Google Scholar
  20. 20.
    Zeng, Y., Xu, X., Fang, Y., Zhao, K.: Traffic sign recognition using deep convolutional networks and extreme learning machine. In: IScIDE, pp. 272–280 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ali Youssef
    • 1
  • Dario Albani
    • 1
  • Daniele Nardi
    • 1
  • Domenico Daniele Bloisi
    • 1
  1. 1.Department of Computer, Control, and Management EngineeringSapienza University of RomeRomeItaly

Personalised recommendations