Breast Shape Parametrization Through Planar Projections

  • Giovanni Gallo
  • Dario AllegraEmail author
  • Yaser Gholizade Atani
  • Filippo L. M. Milotta
  • Filippo Stanco
  • Giuseppe Catanuto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10016)


In the last years, 3D scanning has replaced the low tech approach to acquire direct anthropometric measurements. These new methodologies provide a detailed digital model of the body and allow analysis of more complex information like volume, shape, curvature, and so on. The possibility to acquire the shape of soft tissues, such as the female human breast, has attracted the interest breast surgery specialists. The main aim of this work is to propose an innovative strategy to automatically analyze 3D breast shape in order to describe them within a quantitative well defined framework. In particular we propose a scanning procedure for a proper acquisition of breast surfaces by using the handheld scanner Structure Sensor, as well as a framework to process 3D digital data to extract the shape information. The proposed method consists in two main parts: firstly, the acquired digital 3D surfaces are projected in a 2D space and a set of 17 geometrical landmarks are extracted; then by exploiting Thin Plate Splines and Principal Components Analysis the original data are summarised and the breast shape is described by a small set of numerical parameters.


Breast Medical 3D model Principal component analysis Thin plate splines 



The authors would like to thank the “Azienda Ospedaliera Cannizzaro”, the “Associazione Santantonese per la lotta ai tumori (ASLT)” and the female volunteers for their contribution as models.


  1. 1.
    Robinette, K.M., Daanen, H., Paquet, E.: The Caesar project: a 3-D surface anthropometry survey. In: Second International Conference on 3-D Digital Imaging and Modeling, pp. 380–386 (1999)Google Scholar
  2. 2.
    Allen, B., Curless, B., Popovi, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: International Conference on Computer Graphics and Interactive Techniques, pp. 587–594 (2003)Google Scholar
  3. 3.
    Gallo, G., Guarnera, G.C., Catanuto, G.: Human breast shape analysis using PCA. In: BIOSIGNALS 2010 - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing (2010)Google Scholar
  4. 4.
    Lee, H.-Y., Hong, K., Kim, E.A.: Measurement protocol of womens nude breasts using a 3D scanning technique. Appl. Ergon. 35, 353–360 (2004)CrossRefGoogle Scholar
  5. 5.
    Olaru, S., Filipescu, E., Filipescu, E., Niculescu, C., Salistean, A.: 3D fit garment simulation based on 3D body scanner anthropometric data. In: 8th International DAAAM Baltic Conference on Industrial Engineering (2012)Google Scholar
  6. 6.
    Zhang, X., Liu, F., Ying, B., Bai, Y.: Parameterized design of female chest shape based on UG-platform. J. Fiber Bioeng. Inf. 4(3), 221–233 (2011)CrossRefGoogle Scholar
  7. 7.
    Catanuto, G., Gallo, G., Farinella, G.M., Impoco, G., Nava, M.B., Pennati, A., Spano, A.: Breast shape analysis on three-dimensional models. In: Third European Conference on Plastic and Reconstructive Surgery of the Breast (2005)Google Scholar
  8. 8.
    Catanuto, G., Spano, A., Pennati, A., Riggio, E., Farinella, G.M., Impoco, G., Spoto, S., Gallo, G., Nava, R.B.: Experimental methodology for digital breast shape analysis and objective surgical outcome evaluation. J. Plast. Reconstr. Aesthetic Surg. 61(3), 314–318 (2008)CrossRefGoogle Scholar
  9. 9.
    Farinella, G.M., Impoco, G., Gallo, G., Spoto, S., Catanuto, G., Nava, M.B.: Objective outcome evaluation of breast surgery. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 776–783. Springer, Heidelberg (2006). doi: 10.1007/11866565_95 CrossRefGoogle Scholar
  10. 10.
    Chen, D.T., Kakadiaris, I.A., Miller, M.J., Loftin, R.B., Patrick, C.: Modeling for plastic and reconstructive breast surgery. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 1040–1050. Springer, Heidelberg (2000). doi: 10.1007/978-3-540-40899-4_108 CrossRefGoogle Scholar
  11. 11.
    Farinella, G.M., Impoco, G., Gallo, G., Spoto, S., Catanuto, G.: Unambiguous analysis of woman breast breast shape for plastic surgery outcome evaluation. In: 4th Conference Eurographics Italian Chapter (2006)Google Scholar
  12. 12.
    Structure Sensor Website. Accessed May 2016
  13. 13.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bookstein, F.L.: Thin-plate splines and the atlas problem for biomedical images. In: Colchester, A.C.F., Hawkes, D.J. (eds.) IPMI 1991. LNCS, vol. 511, pp. 326–342. Springer, Heidelberg (1991). doi: 10.1007/BFb0033763 CrossRefGoogle Scholar
  15. 15.
    Rosas, A., Bastir, M.: Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. Am. J. Phys. Anthropol. 117(3), 236–245 (2002)CrossRefGoogle Scholar
  16. 16.
    Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  17. 17.
    Allegra, D., Gallo, G., Inzerillo, L., Lombardo, M., Milotta, F.L.M., Santagati, C., Stanco, F.: Low cost hand held 3D scanning for cultural heritage: experimenting low cost structure sensor scan. In: Handbook of Research on Emerging Technologies for Cultural Heritage (2015)Google Scholar
  18. 18.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference 2008, pp. 129–136 (2008)Google Scholar
  19. 19.
    Weisstein, E., Formula, Rodrigues’ Rotation :, Last visited., May 2016
  20. 20.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Phil. Mag. 2(6), 559–572 (1901)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Giovanni Gallo
    • 1
  • Dario Allegra
    • 1
    Email author
  • Yaser Gholizade Atani
    • 2
  • Filippo L. M. Milotta
    • 1
  • Filippo Stanco
    • 1
  • Giuseppe Catanuto
    • 3
  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  2. 2.Department of Applied MathematicsAzarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Multidisciplinary Breast UnitAzienda Ospedaliera CannizzaroCataniaItaly

Personalised recommendations