Advertisement

Gradients versus Grey Values for Sparse Image Reconstruction and Inpainting-Based Compression

  • Markus Schneider
  • Pascal PeterEmail author
  • Sebastian Hoffmann
  • Joachim Weickert
  • Enric Meinhardt-Llopis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10016)

Abstract

Interpolation methods that rely on partial differential equations can reconstruct images with high quality from a few prescribed pixels. A whole class of compression codecs exploits this concept to store images in terms of a sparse grey value representation. Recently, Brinkmann et al. (2015) have suggested an alternative approach: They propose to store gradient data instead of grey values. However, this idea has not been evaluated and its potential remains unknown. In our paper, we compare gradient and grey value data for homogeneous diffusion inpainting w.r.t. two different aspects: First, we evaluate the reconstruction quality, given a comparable amount of data of both kinds. Second, we assess how well these sparse representations can be stored in compression applications. To this end, we establish a framework for optimising and encoding the known data. It allows a fair comparison of both the grey value and the gradient approach. Our evaluation shows that gradient-based reconstructions avoid visually distracting singularities involved in the reconstructions from grey values, thus improving the visual fidelity. Surprisingly, this advantage does not carry over to compression due to the high sensitivity to quantisation.

Keywords

Partial differential equations (pdes) Laplace interpolation Poisson equation Inpainting Image compression Derivatives 

References

  1. 1.
    Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the SIGGRAPH 2000, New Orleans, LI, pp. 417–424, July 2000Google Scholar
  3. 3.
    Brinkmann, E.-M., Burger, M., Grah, J.: Regularization with sparse vector fields: from image compression to TV-type reconstruction. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 191–202. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-18461-6_16 Google Scholar
  4. 4.
    Carlsson, S.: Sketch based coding of grey level images. Sig. Process. 15(1), 57–83 (1988)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based imagecompression. In: Proceedings of the 19th Computer Vision Winter Workshop, Křtiny, Czech Republic, pp. 19–26, Feb 2014Google Scholar
  6. 6.
    Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shapefrom shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 151–164. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40395-8_12 CrossRefGoogle Scholar
  9. 9.
    Mahoney, M.: Adaptive weighing of context models for lossless data compression. Technical report, CS-2005-16, Florida Institute of Technology, Melbourne, FL, December 2005Google Scholar
  10. 10.
    Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-basedcompression of cartoon-like images with homogeneous diffusion. Pattern Recogn. 44(9), 1859–1873 (2011)CrossRefGoogle Scholar
  11. 11.
    Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-24785-9_3 CrossRefGoogle Scholar
  12. 12.
    Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings of the 1998 IEEE International Conference on Image Processing, Chicago, IL, vol. 3, pp. 259–263, October 1998Google Scholar
  13. 13.
    Melnikov, Y.A., Melnikov, M.Y.: Green’s Functions: Construction and Applications. De Gruyter, Berlin (2012)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Appl. Math. 7(2), 1388–1419 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, New York (1992)Google Scholar
  16. 16.
    Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: Evaluating the true potential of diffusion-based inpainting in a compression context. Sig. Process. Image Commun. 46, 40–53 (2016)CrossRefGoogle Scholar
  17. 17.
    Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 108(3), 222–240 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Taubman, D.S., Marcellin, M.W. (eds.): JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Boston (2002)Google Scholar
  19. 19.
    Zeng, G., Ahmed, N.: A block coding technique for encoding sparse binary patterns. IEEE Trans. Acoust. Speech Sig. Process. 37(5), 778–780 (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Markus Schneider
    • 1
  • Pascal Peter
    • 1
    Email author
  • Sebastian Hoffmann
    • 1
  • Joachim Weickert
    • 1
  • Enric Meinhardt-Llopis
    • 2
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.École Normale de Supérieure de CachanCachanFrance

Personalised recommendations